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Joint Probability Distributions of Structure Factors and the Phase Problem

By A. Krue

Birkbeck College Crystallography Laboratory, (University of London), Torrington Square, London, W.C.1, England
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A method is derived for calculating the joint probability distribution of any desired set of structure
factors. The expressions are obtained in the form of a strictly asymptotic series in powers of N-1
in the case of N equal atoms in the unit cell, and in terms of related quantities in the more general
case. The results are thus more accurate than those of Hauptman & Karle, Cochran & Woolfson
and Bertaut, and are cast in such a way that it is easy to make a connexion between the statistical
approach to the phase problem and the underlying physical basis of the sign relations that have
been used. In particular, the dependence of the reliability of the latter on the number of atoms in
the unit cell is brought out directly.

The general mathematical theory is given in §§ 1 and 2. In § 1 the probability distribution of a
structure factor is calculated by using a relatively simple and powerful method for expressing the
probability distribution of a sum of random variables in terms of the cumulants of the distribution
of one variable. In § 2 this method has been extended to develop formulae for the multivariate
case, and a symbolism is derived for writing down the distribution of a set of structure factors to
the desired degree of approximation.

In § 3 the method is used to make a detailed study of the sign relation between E,y and |Ey|
in space group PI, since this is the prototype of all relations in which signs are determined from
intensities. This example is also used to illustrate a general method for determining the mean and
higher moments of a structure factor as a function of the values of other related structure factors.

§ 4 is devoted to a thorough study of the sign relationship S(h) ~ S(h’)S (h+h’) and to Sayre’s
equation. In the course of the work a new inequality relating U(h), U(h’) and U(h+h’) was
developed. This gives an expression for the bounding contour of the probability distribution of
the three structure factors, and the latter is seen to pass smoothly to the limiting case of the in-
equality. It is pointed out that this connexion between a probability distribution and an inequality
(or equality) can always be made for any chosen set of structure factors.

In § 5 the considerations of the earlier sections are applied to give a critical assessment of the
value of various relations or formulae that have been proposed for sign determination. The idea
of an order of a sign relation is introduced and related to the variance of the estimate of a sign.
The advantages claimed for using a formula having strict, rather than merely statistical, validity
are disputed and illustrated by a study of the relation between S (2h+h’) and the values of |Ey|
and Ey.. A new and more realistic formula is proposed which includes the dependence of S(2h+h’)
on the known value of |E,p|. Finally, it is concluded that there is as yet no routine solution of the
phase problem, and that the high-order formulae are not useful for anything but the simplest
structures.

Notation ,
Where possible the notation of Hauptman & Karle ¢ — 3¢,
(1953) and Cochran & Woolfson (1955) has been used. =1 N
Note particularly that: z, =nf, =2¢j= ;72 (Cochran & Woolfson, 1955).
X" is the average of X over a range of values of h. m = is thei;z_-tlh or de; moment of £
. v .
(X> 18 the expected value of X, . k, = is the yth order cumulant of &.
{X)y is the expected value of X, when Y is held con- ;" _ /w2 = standardized cumulant
stant. y It . . '
. M= t f gf.).
£(h) is the contribution of an atom to the geometrical  ~ _ 312?:;.e§:gir?$?c%ioin?§?r)l (m.g£.)
structure factor. . e
K = .2.1).
N = number of atoms in the unit cell = nf. M= (_leznfﬂant generating function (c.g1.)
t = number of independent atoms in the cell. & —oc £ T of a set of structure factors
n = symmetry number. A = cgf )
N . . .
—f 2 &  is the mathematical expectation operator.
¢ = f'/V,élf’ (Bertaut, 19554, c). S(h) or S(Ey) is the sign of Ep.
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Introduction

It is now some years since the appearance of the mono-
graph of Hauptman & Karle (1953), who attempted to
develop a routine procedure, which did not require
previous knowledge of any signs, for determining signs
of structure factors in the space group Pl and other
centrosymmetric space groups. That this procedure
could lead to a routine solution of the phase problem
for crystals of more than moderate complexity was,
however, severely disputed by several authors (for
references see Cochran & Woolfson (1955)). The
importance of Hauptman & Karle’s work lies in the
introduction of the idea of a joint probability distribu-
tion of structure factors which enables one to calculate
the probability that a certain structure factor (or set
of structure factors) has a certain sign when certain
other related structure factors have their observed
values. Some relations involve only the magnitudes of
the latter related structure factors, while others
require that the signs be known as well, The latter are
usually known as sign relations. We may call the first
category sign determining relations.

The distribution functions that have been obtained
by Hauptman & Karle, and others, notably Cochran
& Woolfson (1955), are not in closed form, and it is
not at all clear what degree of approximation is in-
volved in the results. The statistical problem in crys-
tallography is, however, quite clearly one involving
linear sums (structure factors) of random variables
(the atomic contributions to a structure factor), and
there are more or less standard methods in the theory
of probability for dealing with problems of this kind.
In this paper we shall use (and extend) these methods
to set up accurate expressions (to any desired degree
of approximation) for the joint probability distribu-
tion of any selected set of structure factors. We shall
then apply these results to calculate in detail prob-
ability distributions in two distinet examples, one
involving the estimation of a sign from intensities
(P(Usp, Up)), and the other the estimation of signs
from other signs (P(Uy, Uy, Uppn))-

Finally we shall discuss the bearing of this work on
the solution of the phase problem.

1. Linear sum of random variables and the prob-
ability distribution of a single structure factor

The concepts and methods of probability theory which

we shall use are summarized in Appendix A.

In this section we shall use these methods to re-
derive the results of Hauptman & Karle (1953, p. 8,
equation (1-29)) and of Bertaut (1955¢, equation
(II-1)) for the probability distribution of a single
structure factor. This will serve as a preparation for
the more complicated case of distributions involving
more than one structure factor. It should be stated,
however, that there is also nothing essentially new in
the method or the results. We shall only sketch the
derivation since what is involved is the well-known
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theory of the Gram-Charlier and Edgeworth series, and

a very good account is given in Cramér’s book (1946).
Let us assume that we have a sum % of ¢ random

variables &; each of weight ¢;:

(1-1)

E = @&+ @bt oot @ik

The connexion with the ecrystallographic case is
obvious, for, in the usual notation, a normalized struc-
ture factor is given by

E(h) - £ piéuth), (1-2)

where @; is the normalized scattering factor introduced
by Bertaut (1955a, ¢)

-slin]

(we shall in what follows ignore the dependence of ¢
and f on h). &(h) is the trigonometric factor for the
space group involved and ¢ is the number of inde-
pendent atoms in the unit cell. The total number of
atoms in the cell is N = n¢, where # is the symmetry
number. For space group PI n =2,

(1-3)

&(h) = 2 cos 2nh.r (1-4)
and N = 2t
It also follows that
. ¢ _ Nn X
E? 2?;! n.=.2<p,_1 (1-5)

1

7

When nothing is known a prior: about the distribu-
tion of atoms in a unit cell, the position vector r may
be assumed to be a random variable and hence £(h)
will also be a random variable. Note that, in what
follows, the distribution of r and of &(h) is not ex-
plicitly introduced, and in fact the general theory
holds for any distribution one might consider. In
practice, when one comes to calculate a result, it is
simplest to assume that the atoms are distributed
uniformly* over the unit cell.

While the analysis can be carried out quite gener-
ally, it is instructive for the moment to assume that
all the atoms are equal and have the same distribu-
tion. Then equation (1) becomes

¢
E=¢3&, (1-6)
1

where

@ =Nt = (nt)},

All the components £; have the same distribution,
with mean zero and standard deviation o, given by

(1-6a)

0 = & = n, the symmetry number. (1-60)

The sum £ has a zero mean and a standard deviation
* The effect of imposing stronger restrictions on the possible

positions of atoms or pairs of atoms will be considered else-
where.
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of unity. If C;(u) is the characteristic function of the
single random variable &, and C(u) is the c.f. of the
sum E, then, from equation (A-14),

C(u) = [Cy(gw)]',
which, using (A-21), becomes
C(u) = exp [tK,(tpu)], (1-7)
where K, (u) is the c.g.f. of the single random variable
&. That is,
(in)”

»!

K, (i) = 3 k, (1-8)
r=1

where the k, are the cumulants of the distribution of &.
So, combining (7) and (8),

(1-9)

from (1-6a).
At this stage it is clearly convenient to transform
the distribution of & to standard measure by dividing

the cumulants %, by ¢} = (/n)’, that is, we intro-
duce the standardized cumulants
A, = koY = k,/n"®. (1-10)

(Note that the distribution of ¥ is already in standard
measure; had we initially worked with F(h) rather
than E(h) we should have had to transform to the
latter at this point.)

Hence we may write equation (9) as

cwr -5 H(H]]

Now A; = 0 and 4, = 1, and taking the term in v = 2
to the left-hand side, we write the last equation as

(1-11)

oS- [ Z 5]

To derive the Gram-Charlier series, the right hand
side is now expanded in powers of u, giving (see
Cramér, 1946, § 17-6)

(1-12)

(tu)

i e (1113)

exp<2§> C(u) = l-{—f13(3')3 A
or
(u)—exp( %) §—3(iu)3exp (—~2—)+..., (1-14)

where

. A, 3554

Ay = A/t A7=t-’)_l72+7132 ¥
As 1 fterms in 244,

Ay = Al As_t_+ﬁ(and A )’

, Ay 28043
A = A2, Aq = t7—/92 B

2
_ e 104 (1-15)

6§ g2 t
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To obtain the probability distribution of E, P(E),
that we seek, we now take the Fourier transform of
equation (14). The transform of each term is obtained
by using the result

él?z S:, (in)” exp [—}u?] exp [—iua]du
= (=1 ¢ (x)

where ¢®(x) is the vth derivative of the standardized
Gaussian function

@(x) = (27)~ exp (—32?)

and H,(z) is the Hermite polynomial of the yth order,
defined by the second member of equation (16).
Some of the H,(x) are given and tabulated in Appen-
dix F.

So, finally, we have

A4
P(E) = 9(B) =37 ¢(E) +

- H(@)p@), (116

(1-17)*

Aa DB +...

= (p(E)[ ‘;fﬂ (E)+ H(E)+.. J (1-18)
where the A4,’s are given by equation (15).

This result is perfectly general. To arrive at the
results of Hauptman & Karle (1953, p. 8) for the space
group P1, all one has to do is to substitute from (15)
for the A,’s in terms of the cumulants, and then for
the latter in terms of the moments of the probability
distribution of & (see (A-19)). As stressed above, it
is only at this stage in the derivation that the nature
of the assumed probability distribution enters into
the theory.

From equations (15) and (18), we see that the cor-
rection terms to the simple Gaussian distribution for
E depend on powers of 1/t}, where ¢ is the number of
random variables contributing to E, or, in the crystal-
lographic case, on powers of 1/Nt where N is the
number of atoms in the unit cell. Since in practice
it is necessary to take only a finite number of terms in
the series, we require that the terms tend regularly to
zero so that a term is negligible compared with the
preceding one, i.e. that we have a true asymptotic
series. This is not, however, the case for the above
series since terms in 1/N, for instance, occur in A4,
as well as in 4,. Furthermore, we see from (15) that
contributions up to order 1/N# contain no cumulants
of order > 3, those up to order 1/N no cumulants of
order > 4, and so on. Indeed it is easy to show that
if we wish to consider only cumulants (and moments)
up to order » we need not take into account any terms
of power greater than 1/N#~1. The form of the Gram-
Charlier series (18), in which the individual terms 4,
arise as coefficients of powers of the carrying variable
u, obscures this simple and important fact.

* No confusion ought to arise between the two standard
usages of @ in (I1'3) and in (1-17), since the two meanings
never occur together.
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It was to overcome this objection that Edgeworth
devised a series (see Cramér, 1946, Chap.7) which
gives a straightforward expansion in powers of 1/N?%
and which is such that the calculation of terms up to
a desired order does not require knowledge of any
moments that are not really necessary. We cannot
here go over this well-known section of random vari-
able theory; but the point js raised here so that we
might, in what follows, aim at proper asymptotic
expansions in which the remainder is of the same order
as the first term neglected.

The method given here for calculating the prob-
ability distribution of a structure factor is a precise
formulation of the original approach of Hauptman &
Karle (1953) and of Bertaut’s first papers (1955a, b).
In a later paper Bertaut (1955¢, equations (I-16) and
(I1-1)) makes use of a rather dubious expansion of the
Dirac é-function to arrive at what is essentially the
Gram-Charlier series given above. Since he has made
great use of this method, perhaps it is worth while
making the following comments on the form of his
equations.

When one is dealing with a probability distribution
f(z) that is approximately Gaussian, it is convenient
to express it in the form of a series in terms of the
normal error function and its derivatives, thus:

f@) = p@)+33 9@+ gP@) + ., (119)
which, by (16), becomes
f@) = p() [H%Ha(wH%mWH---J , (1:20)
where
a,= (1ye, =\" H@fwa )

v —0o0

because of the orthogonal property of the Hermite
polynomials. Using angular brackets to denote aver-
ages, we may write

4, = (H,@)y, (1-21a)
and then (20) becomes
@ (H (2)>H,
flz) = @) [1+2 <'—(z)>,—L(x~)} ) (1-22)
=3 v

which is exactly the expression that Bertaut’s ex-
pansion of the J-function was designed to give. While
formally correct, we have seen that, for the problems
we are dealing with, z is itself a sum of random vari-
ables, and the form of equation (22) hides all reference
to the orders of the terms of the series, as shown
above for (18). It should, however, be mentioned that
in his first approach, subsequently abandoned, Bertaut
(1955a, equation (I1I-41)) gives the dependence of
the terms on powers of 1/N%.

Finally we may note, for completeness, that curves
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of P(E) (equation (18)) have been calculated and
plotted by Slack (1946) in another context.

2. Joint probability distribution of structure
factors: general expression

Consider a set of m normalized structure factors £ (h;),
which, when there is no ambiguity, we shall write
freely as E; (here again as in § 1 it is convenient to
normalize from the outset):

E(hy) = @ &i(hy) +@&(hy) +. ..
Eh,) =@ &(hy) +.ovvvnnna... +@iéi(he) ,

The definitions and notation we shall use for a multi-
variate probability distribution are given in Appen-
dix B.

We wish to develop an expression for the joint
probability distribution of the E(h;), analogous to
equations (1:18) and (1-15) for a single structure
factor. Mathematically, we have to derive the Gram-
Charlier, or rather Edgeworth, series for a multi-
variate distribution. A search through the statistical
literature failed to reveal the formal expressions, but
it is fairly easy to generalize the method of § 1 and
Appendix A to derive them. That is, the characteristic
function of the multivariate distribution is first eval-
uated, and then the probability distribution is found
by taking the Fourier transform. For brevity, however,
we work with the entirely equivalent moment-
generating function to save writing complex ¢’s, and,
as will be seen, the mathematical operations become
largely symbolic ones, very easy to manipulate.

For each E(h;) we introduce a carrying variable u;
(note that it is the E’s that are from this point of view
the random variables, not simply the &'s as might at
first have been thought). Then the m.g.f. of the E’s
is, from (2-1),

M (Ur, Us, . Up) = & exp [ E(hy) + . . . +unE (ha)]
= & exp [uy {g, & (hy) +. .. +@i&e(hn)}
+uy {@r &1 () +. .+ @ik (hy)}

+um{¢1§1 (hm)+ v +‘Pt§t(hm)}] :

which we re-arrange as

= (& exp [uy &, (hy) +uep, &1 (hy) + . . - +um@réi(hm)])
% (& exp [uy @p&a(hy) +up@aby(y)+ . o . +um@yéa(him)])

X (éa exp [u1p:&e (h1) +ue@e&e (ha)+ . o +umpeés (hm)])

=M (@yuy, QrUs, « o o5 Priim) My (Patty, Patly, - - -, Patim)
X ot e eneroesonaanonenn X M (@aur, @euz, .. .5 Qrm),
(22)

where M;(@iu1, @ise, ..., @itm) is the m.gf. of the
joint probability distribution of the contributions of
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the ith atom to the structure factors £, . . ., E,,. Ifall
the atoms are assumed to be distributed independently
through the unit cell in the same way, then all the &;
have the same distribution and we can drop the suffix
. Then we have

rﬁ(ul, ...,'um)

= M(pru, .. o Qellm) . (2:3)

We shall in this section confine ourselves to the case
where all the atoms have the same scattering factor,
Le. ¢, = ... = @t = @, and shall find that, just as in
the univariate case, the coefficients in the series finally
obtained will be powers of 1/N%. The case of unequal
atoms is treated in Appendix C.

For equal atoms, (2:3) becomes

.y (pIum). . .M((ptul, .

Mgy Uun) = [M(puy, ..., pux)l,  (24)
where M (uy, ..., un)
_ Myoo. .. 9 Mo20... 2
=1 arorer M taTTer e
Moy w w
Fﬁufug Ut ... (2'5)*
and the mixed moments m,,,.  are defined as
Mepgr = <[5(h1)]p[§(h2)]q[§(ha)]r' - (2+6)

- S°° .. S°° [E(h)PIE(BT. ..
X (&), - ., E(n))dE(hy). . . dE(hn) |

where y(&(hy)...&(hn)) is the a priori probability
that &(h) has the value £(h;) for h = h,, the value
&(h,) for h = h,, ete. The simplest assumption, which
has been so far used by almost all authors on this
subject, is that in which the atoms are distributed
uniformly throughout the cell (i.e. they may be con-
gidered to perform a random walk). Then the distribu-
tion of £&(h) is independent of h, and the mixed
moments may be caleulated very easily (Hauptman
& Karle, 1953; see also Appendix D). In this paper
we shall make this assumption as well, but it should
be noted that the general theory of this section does
not require a specification of the distribution; only
when we come to carry out computations do we have
to insert values for the mixed moments Pogr..

As indicated earlier, we shall not carry out the
general analysis in terms of moments, but now intro-
duce the multivariate cumulant generating functions
(see Appendix B)

KUy, o ooy Um) = log M (uy, o .., Un)
and
K(uy, ..., un) = log M(u,,

vy um) ’ (2'7)

* We are working here in standard measure where the means
Mygg .. = krgg... = 0, myyg... = kyyo... = 0, ete.
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Where K(ulj ey ’u,m)
ka00... 2 koso. . .
T 27001, T orar0r, T
by
gl e (28)

In this expansion there will be as many terms of
the »th degree, as there are partitions of

P+q+r+... =», (2-9)
and we may refer to the set of corresponding cumulants
kpgr..(D+g+7... =) as vth order cumulants. The
relations between the cumulants and moments are
given in Appendix B.

Then equation (2-4) for the m.g.f. may be written

M (w1, .y um) = {exp [K(@uy, ..., gum)]}
= exp [tK(pui, ..., pum)]
oo k (pyl+q+r...
= exp|t S Pt
p{pﬂ.“:g plglrl...

xufudus.. J . (2-10)
Now, for equal atoms,
¢ = 1/n)t,

where 7 is the symmetry number of the space group.
Furthermore, by (1-6b) the standard deviation of the
random variable & is n#, and hence

ksgo... = Kgo... = (H=mn.

We transform our notation to that of standard measure
(as in § 1) by introducing the standardized cumulants

Z’pqr... = kpqr/kg{)% k%/zzoka/ozz ..

(2-11)

= kpqr.../(Vn)p+Q+r..' . (212)
Then from (2-11) and (2-12), (2-10) becomes
uﬁ(ul, ...,um)
o3 A wuN? fu\?
~ oxp|t e 4) (_) ] :
exP[,,+q,Z,,=2pz PI (zé 7 > (213)
where Aygp, . = Ag2p... = ... = 1.
We now proceed just as in the univariate case
considered in § 1. Taking the terms in p+q-+r... = 2

to the left-hand side, the last equation can be written
as

exp [—§(uf+uf+... +22110.. Uity + 2101, Uytug+ . . J]
Xl (U1y < o0, Um)

_ - Apgr... UN\P (u\7 (ug\"
—exp[‘mt’?;sp!qzﬂ (7%) (ﬁ) (7%) "'}"2 14)

To simplify writing out the expansion of the right-
hand side of this equation, it is convenient to intro-
duce the notation
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A, = set of all terms with p+g+7... =»
A
- S M uf (2:15)
U Lk

where the sum S is taken over all partitions of
p+q+7... = v. The right-hand side of (2:14) is, in
this notation,

Rad Av - Av
and, on expanding it, we obtain
1

1
+EA3

1 1,
+?(A4+§-!A3>
1 1 1
o (Aﬁ-m 24, 4+ Ag)
4.0

(2-16)

In this last expression we have, as foreshadowed in
§ 1, collected terms according to powers of 1/t}, where
¢ is the number of random variables involved (and
which, we recall, is proportional to N). The notation
(2-15) has been chosen to bring out just this similarity
between the multivariate and univariate cases, and
(2:16) should be compared with (1-15).

The inversion of the m.g.f. # (u1, us, ..., Un) to
give the joint probability distribution of the E’s,
P(Ey, Es, ..., En) now follows just as in § 1. The
second-order terms are brought back to to the right-
hand side to give

v”(?h, U2y o o .,um)

= exp [l(u§+u§+  F2h10U Ut - )]

{ Ly (A4+1A)+3/2(A5+A A+ A3+ }

(2-17)
In the inversion (cf. equation (1-16)) a term
exp [$(ud+ud 2410, Wttat+. . )]ufudul. ..
will give rise to the term
Hy(E\)Hy(E2)Hr(E3). . .qo(Er, By « .., Bn)

where (po(E’l...Em) is the standardized multivariate
normal distribution function

(PO(EI: LD Em)
= (ID)}2m)"" exp [~ H(Ei+ B+ 200, By By 4. )],
(2-18)
|D| being the determinant of the matrix
\i 11 %2 - Aim H
D =) Uy Qo .. G2m || (2-18a)
| eeverenneenanes P
: am1 Am2 Omm l
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where
i = [—!M—'g}% . (2-180)
Here M is the moment matrix
Ao... Ao, o+ H100..1 '
M= Ato... Aeo... ~o Aore..n (2-18¢)
2'1.0(;. .1 .................. AOO .2.

and A;; in (2-180) refers to the 4 in the ith row and
jth column of the matrix M.
In all* practical applications A54... = Ao1y... =
.. =0, and Ag. .. . =1, so that (2-18)
simply becomes

@(E1. . . Em) = 2n) ™ 2exp [—L(Ei+.. . +EL)].

We thus see that it is a comparatively simple matter
to derive the expression for the joint probability
distribution, and no purpose would be served in writing
down a formal answer. It is enough to write down the
moment-generating function and invert term by term,
using the rules just given. The mathematics thus
becomes merely a matter of carrying out rather simple
symbolic operations. As an example we shall give the

2
2tA

= Agoo = -

(2-19)

result for one of the possible terms in the set
of the m.g.f. (2:17). For instance, the term

1 Asoo... 3 Ao, ..
3310100 . TTirar ... At
11

= 26 As00.. A U U Uy

gives rise, on inversion, to the term

11
‘7162300 Ao, Ha(Ey) H\(Ey) Hy(Es)

apart from a Gaussian factor which is the same for
all terms. The problem of inversion to obtain the
complete asymptotic series is largely one of choosing
a good notation; the process should become clearer
when we deal with practical examples in the next two
sections.

3. Relations between the sign of a structure factor
and the intensities

3-1. Joint probability distribution of Uay, and Uy

We shall calculate the example in detail for the
space group P1. The results will carry over to the
case of higher space groups, and indeed the example
is the prototype of all calculations of signs of a selected
group of structure factors from the intensities of others
related to them, e.g. in P2,/a the signs of Uy, o o from

* Except when certain restrictions are made on the distri-
bution of &; see remarks at the end of Appendix B,
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the values of Uj ;. ; where k is a free index (Haupt-
man & Karle, 1953, p. 50; Cochran, 1954).
For brevity, we use the notation

=HEy, E;=Ey.

The subscripts on a mixed moment or cumulant are
then to be taken as referring to £, and &, in that order

Mpq = {(2 cos 2n2h.r)?(2 cos 2zh.r)% . (3:1)
The only mixed moments that do not vanish are
those that are even in both suffixes, and those that
are odd in the first and even in the second. Their
values may be found directly by evaluating the aver-
age (3-1) or more simply by the method of Bertaut
(1955a, b) (see Appendix D). The mixed cumulants
are then calculated by means of the equations (B-7).

From (2-15) and (2-17) the m.g.f. function is given

by

M (U, Uy) = exp [§(ui+ud)] {H—tlé VEY Uy ug
w3zt orired] g gy
+t—/2[3. wdul+ 124’ uluzJ
+t=}_/2[11!1;!“1“§] [ %48' 4+0210;1ug}
+(%/2[ };122' u1u2J3+ ce } (3:2)

Inverting according to the rules enunciated in the
last section, we obtain

1 ) w
P(E}, E,) = 5, OXP [—3(E5 +ED)] {1 o '122'
HL (B Ho B+ [ 150 HL(B) + 5,0, Hy (B
1\ ) oty 4101 0'4' (
1/ 25\
+§(1121> Hy(E,)H,(E))
232 Gy HAE Z o
+t3/2 3121 a(By) Hy(B,) + 1141 WEDH i 2)}
L[ Aiphag
+W[mﬂs<El>H2(Ez)
A
HToroir BB Hy(5)|
1 Ars 3H .
+W(ﬁ> (&) G(E2)+_”}‘ (3:3)
Substituting numerical values for the A’s (Appen-

dix D), and putting N = 2t,
asymptotic expansion

we finally obtain the
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o (B Ha (o)

P(By By =5 exp[~ 4B 4B {1+

27

1 1
— g [Ha(B0)+ Hy(By)] + gz Ho(By) Hy(B)*

(Eq)+3H,(E,) Hy(Ey)]

1
— sy HH By

1
YT [f6H5(Ey) Hy(Ey) +1sHy (By) He (E,)]*

1

+ g BB HalB + ..}, (3:4)
In this expression we have marked by an asterisk
those terms which would not be given by Bertaut’s
symbolic expansion of the d-function (1955¢, equation
(ITI-1)) up to terms of the fifth order. These terms
could only be retrieved by carrying his expansion as
far as the ninth-order terms. The other terms in (3-4)
are identical with those that would be obtained from
Bertaut’s method since it may be shown (Cochran,
private communication ; cf. Cochran & Woolfson, 1955,
Appendix II) that the averages that would occur in
his expressions reduce to

(By(B3-1)) = N},
(Ey(Bi—8E2)) = —82\7-3/2
((B3—3E,)(Bi—1)) = —3N~%2

We have described the steps leading up to equation
(3-4) in some detail since all probability distributions
of interest can be derived in the same way. The only
new work that has to be done in the case of a different
set of structure factors is the calculation of the non-
vanishing mixed moments and cumulants.

(3:5)

1

Fig. 1. Joint probability distribution of Uzp and Uy for space
group P1 calculated from equation (3-4) for the particular
case N = 10.

To obtain the normalized distribution the numbers with
which the contours are labelled should be divided by 2x.

The broken line shows the bounding contour of the range
permitted by the Harker—Kasper inequality U, > 2U5—1,
and therefore corresponds to P = 0 for the probability
distribution.
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We have carried the expansion (3:4) as far as terms
in 1/N32 so that we might gain some insight into the
importance of the various orders of terms in practical
calculations of the distribution functions. We have
computed P(E,y,, Byp) from (3-4) for the case of
N =10 and the results are plotted in Fig. 1. This
particular value of IV has been chosen so that a com-
parison might be made with Fig. 2 of Vand & Pepinsky
(1953), which was computed for this special case by
numerical convolution and is therefore strictly ac-
curate. The contours including terms up to power
1/N3% agree with those of Vand & Pepinsky down to
about P = 0-3 &nd show that the theory is correct.
The fact that the contours beyond this range do not
join quite smoothly into the limits set by the Harker—
Kasper inequality, U,, > 2Uf—1, arises from the
neglect of higher-order terms in the asymptotic ex-
pansion. By including more terms the curves could be
made to resemble the true ones to any desired degree.
The effect of including only the terms up to 1/N?% in
the computation may be seen by looking at Fig. 1 of
Cochran & Woolfson (1955); this was computed from
their expression (3-12) for P(Hyy, £y), which is correct
to the order 1/N%. Only the area near the origin is
well reproduced in this approximation.

3:2. The conditional probability distribution P(E.y|Ey)

A useful procedure for obtaining some insight into
the nature of the probability distribution is to evaluate
certain characteristics of the conditional distribution
P(E,p|Ey) of Eyy on Ey. The expression for P(Ey,|Ey)
is, of course, identical with P(Hyy,, Ey), but the new
notation emphasizes that we shall be concerned with
the probability distribution of E,y as a function of Ey,.

We first make some remarks about the mathematical
form of the conditional distribution, and about nota-
tion.

3-21.—If F(z, y) is a bivariate probability distribu-
tion we shall denote the conditional distribution of x
on y by F(xly) or by Fy(x), which may be thought
of as a set of univariate distributions depending on
the parameter y. More specifically, if we wish to em-
phasize that the various moments and characteristics
of Fy(x) depend on y, we include y as a subscript,
e.g. the conditional mean and variance of x are written
{x), and o}(x) respectively. More generally we shall
denote the sth moment of z by u,(z), and the sth
moment about the mean by ps(x)y:

Sw 2 F(x, y)dx

ps()y = {2y = =2 —, (3-6)
S Fz, y)dx
‘ Us(2)y = {(x—(x)y)") . (3-7)
We note that
02 = iy = ps—(T)?, (3-8)
ps= ps—3pualTy—(z)® . (3:9)
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If any of the characteristics is plotted as a function
of y, we shall speak of the curve of regression of the
mean of x on g, the regression of the variance, ete.

When the conditional probability Fy(x) is not

Gaussian, it may be expanded as a Gram-Charlier
series, as in § 1:
1 Py
Fy(z) = q)y(x)+§ys (x)y —(gii—)Jr ceey o (8°10)
where
_ 1 . (z— (x);,)
@y(x) = ou (@)t ez.p[ 2% 2 :‘ < (311

The third moment in (3:10) determines the skewness
of the distribution. The higher-order moments (or,
more strictly, the cumulants; see equations (1-15) and
(1-18)) reflect the more subtle deviations from the
Gaussian curve. When these can be neglected the
position of the mode (most probable value) is given by

() + ptsf20% .

All the probability distributions of interest in this
and later sections are adequately described by the
mean, variance and third moment, since it will turn
out that the latter are of order 1/N%, 1+0(1/N), and
1/N32 respectively. This follows from the fact that the
random variables we are dealing with (i.e. the struc-
ture factors) are themselves sums of N random
variables (the atom contributions). Furthermore, be-
cause we have represented the probability distribu-
tions by a truly asymptotic series, the actual values
we shall obtain for the characteristics will be strictly
correct to the degree of approximation we choose.
The probability distribution (3-4) is of the form

(3-12)

i+7

P,y) = ooyt 2 bz ay,qa( . 9) (3:13)
- gl ) |1+ T VB H@H )| 614
i+7>3
where
o, y) = p(@)py) = (2n)~texp [—§(x®+y?)] (3:15)

is the bivariate normal distribution. The moments
(3-6) will then be given by

i ot e, y)
s [ T y)‘f‘Zﬂ“‘i—ayy)'J dx
’ _ " —00 R
ps(x)y = \uoo [ (0.9)+ 5 0 @(x, y) d (3-16)
o P,y - if axqay, J X
IBD+ ﬂz} 1]
=, 3:17
ﬁulo ( )
1+7
where
s (™ 0, y)
11.].=S*oox gy (3-18)
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(note that on the left-hand side s is a superfix, not
a power). The I}; may be calculated once and for all,
as in Appendix E. The f:; will be known (in terms of
the cumulants) for the particular probability distribu-
tion of interest by comparing the latter with (3-14).
They may then be substituted in (3-17) to give the
desired moment. The moments about the mean are
then found by using equations (3-8) and (3-9). The
calculations are rather lengthy but straightforward.
3-22.—In this way we have determined the charac-
teristics of the distribution P(E,,/Ey). Writing
E,y, = E,, E;, = E,, the results to the order 1/N%?2 are:

Mean: (Eon)p,

1 1
aN? (Ei&‘—l)_w [$H(Ey)+5Hs(Ey)]

- . (319)
1—8—NH4(E1|)
1
I_ZNH‘g(Eh)
Variance: 0%, (Esp) = . (3-20)
1—4—N‘H4(Eh)
—1412N—ELN . (3-20a)

(Equation (3-20a) is obtained by expanding the
denominator by the binomial theorem, which will be
justified over the range of £ we shall be concerned
with).

Third moment about the mean:

1
ta(Eon) gy, = RED [—$Ho(En)+Hy(Ep) +{5Ho(Ey)] -
(3-21)

In Fig. 2 we have plotted the regression curves of the
various characteristics for the case N = 10, computed
from the above equations.

If we include only terms up to the order 1/N%,

1
we see that Fy, has a mean of ot (E%—1), a variance

of unity and a third moment of zero. (The regression
curves to this approximation are also plotted in Fig.2.)
Hence, taking account of (3-10) and (3-11), it is clear
that the distribution is a simple Gaussian one, and
exactly equivalent to Cochran & Woolfson’s (1955)
equation (3-8) when the latter is rewritten in terms
of E’s rather than U’s, We thus see that Cochran &
Woolfson’s result is an approximation correct to the
order 1/N%, and, as already mentioned, will give a good
representation of the probability distribution so long
as By and Ej; are small compared with their maximum
value, Nt, as is commonly the case in practice when
N is large (see § 52 below). When E}, is large, the
approximation is inadequate, as may be seen from
Fig. 2, and indeed entirely misleading, mathematically
speaking, Thus when |Ey| ~ N*%, the variance is no
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0+  Variance

Fig. 2. Regression of the mean, variance and third moment of
Eop on Ep for PI, N = 10.

The full lines are calculated from the expressions (3-19),
(3:20) and (3-21) respectively, which are approximations
correct to the order 1/N?32, The broken lines represent the
corresponding approximations to the order 1/N%, and would
follow, for instance, from the theory of Cochran & Woolfson
(1955).

longer unity but tends to zero, as required by the
Harker—-Kasper inequality. Our equation (3-20),
which is the correct approximation to the order 1/N%2
does indicate this effect correctly, as will be obvious
from (3-20a).

This means, in turn, that Cochran & Woolfson’s
(1955) expression (3-10) for the probability P, (Zy)
that E,, is positive gives an underestimate for this
probability when E or E,, is large, since it is based
on their equation (3-8) in which the variance has been
taken as a constant (unity) not depending on the
magnitude of E,. The correct expression for P, (E,p)
may be found from our equation (3-4) for P(Eyy, Ey)
by using the very simple but powerful result of Bertaut
(1955a, 1956b) that

P;l; = %iépo/Pe 3 (322)
where P, and P, refer to the terms in the probability
expression which are respectively odd and even in
the structure factor involved (E,;, in this case). This
gives
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P (Ezh) = i+

B, (B} —1)+terms in ——in (3-4)+

1
N3/°
1+terms in 1/N in (3-4)+

2N1}

. (3-23)

When all terms beyond that in 1/N% are dropped,
the result of Hauptman & Karle (1953, p.40) is
obtained.

We have not computed P,(E,,) for the example
N =10 since its behaviour is quite clear from the
general expression P(E,y, E)) plotted in Fig. 1. For
large values of E; we should expect the probability
distribution to pass smoothly into the range of the
Harker-Kasper inequality (where P, (Hy,) = 1), as
shown in our Fig. 1. It is thus clear that when a sign
is ‘almost but not quite’ determined by the inequality
we can quite safely take it as so determined. These
remarks are made here because they are also ap-
plicable to the more important case of the Sayre—
Cochran—Zachariasen sign relation (see (4-1) below)

S(h) ~ S(h')S(h+h') . (3-24)

Cochran & Woolfson’s (1955) expression (4-16) for the
probability that this holds is again an underestimate
when the structure factors involved are large.

3-3. The regression of Ey on Eyy,

The result (3-23) gives the probability of the truth
of the sign-determining relation

S@h) ~ S(EE—1) (3-25)

and would formally close this section. However, as
an introduction to the wider discussion of the phase
problem, it is instructive to derive the characteristics
of the conditional distribution P(#;|E,;). CEp) gy 18

of course zero, and we find that, to the order 1/N%2,

1
N’k 1 Bon— H4(E2h)
1 1
. — e Hs(Bom) — grap Hs (Hon)
<Eh>E2h = 1
1~ o Hu(Eon)
1
= 1 +_N_—‘}E2h N (3'26)

where, in the second step, we have made use of the
result (cf. equation (4:20a) below)

x—A {4H;(x)+Hy(x)} .
Y e —z. (3-27)
Hence we have shown that
1
B=1) = 57 Ban (3:28)
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is correct not only to order 1/N%, as might at first
be thought, but to order 1/N*2 We would surmize
that it may be true to an even higher order of ap-
proximation. The average in (3-28) means an average
over an ensemble of all possible structures having the
same number of atoms. Statistically, we might say
(cf. Bullough & Cruickshank, 1955) that N¥(E%—1)
provides an estimate of Ey,. A measure of the reli-
ability of such an estimate is provided by the variance
of E% about its mean. By the methods of § 3-21 and
Appendix E, we can calculate (E4)g,y, and we find
that the required variance
4 2

Hence the estimate N*(EZ —1) of £,y has a variance of
2N +4NtE,, —2(3—E},) . (3-30)

When E,, is small, the dominating term in the last
expression will be the first, and we see that in this case
Bullough & Cruickshank’s approximate trigonometric
method for calculating the variance is adequate.
However, when E,,, is large and positive, the variance
is much greater than would appear from the first term
2N. In this case, we should not use N}(E3—1) as an
estimate of E,, but the accurate formula of Cochran
(1954) given later (equation (5-3)). When E,j, is large
and negative, we see that N*(EL—1) is a very good
estimate of F,y, as is to be expected, since in this case
Ey, is likely to be small.

—~E%). (3-29)

3-4. The determination of signs from inlensities in space
groups of higher symmetry
In space groups other than PT, the moment ,,
will be non-vanishing for other structure factors
besides the pair Ky, and Ey. Thus in P2;/a, m;, += 0
for the pair Ky o 4 and E,;, (Hauptman & Karle,
1953, Table 10), and, to the order 1/N%,
(___1)h+k o
P (B 0,2) = %‘*‘21/2—1“ [Eop, 0,2 (B ri—1) . (3:31)
Since k is a free index one may sum over it (Hauptman
& Karle, 1953, equation (4-15)), so that

S(EZh,0,2l) a4 S{Z(

1) (- 1)}.
k

(3-32)

Cochran (1954) has shown that, quite irrespective of
probability theory, the deep origin of (3-32) is to be
found in the exact formula expressing the relation

between the Patterson—-Harker section at y = § and
the projected electron density on y = 0:
Eop,o0 = N (=1 (B 1) (3:33)
1 £
= Néf 2 (- )h+k(Ehu"1) s (3-34)

k=0

where K is the number of terms in the summation.
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(Vand & Pepinsky (1953, 1954) had earlier pointed
out the connexion of the results of the probability
theory with the Harker section.) Cochran has discussed
the physical basis of the conditions under which (3-34)
gives a reliable estimate of the sign of By, ¢ g

From the point of view of statistical theory, by
analogy with the discussion in § 3-3, one of the terms
(=1)""*N¥(E3,—1) provides an estimate of Ha o 5
with a variance of the form

aN-*_N%f(EZh, 0,20+, (3-35)

where @ and b are constants. Except when Eg, o o is
large, the first term will dominate. Now on reasonable
assumptions (see § 52 below), the number of terms
K in the summation in (3:34) will be proportional to
N#%, 50 that the variance of the estimate of the Eop 0,2
through the formula (3:34) will be of order N?22
Hence, as the number of atoms in the structure in-
creases, the reliability of the formula will decrease.
The physical reason is the increasing number of
‘non-Harker’ peaks to be found in the Patterson sec-
tion at y = 4. Only when E,, o, is large and the
second and third terms in (3:35) are important can we
expect the sign indication to be reliable.

The argument in the last paragraph may appear to
be rather condensed, but the reader will easily be able
to fill in the details for himself after reading § 5-2
below, where other formulae involving a summation
over & set of contributing terms are discussed at some
length.

4. Relations between the signs of structure factors

4:1. Probability distribution of Ey, Ey and Ey y

It is well known that when the unitary structure
factors Uy, Uy and U,y are large enough their signs
are probably related by the Sayre-Cochran-Zacharia-
sen (S.C.Z.) relation

S(h) ~ S(h')S(h’+h) (4-1)
or

S(h)S(h’)S(h’+h) > 0. (41a)

In this section we shall find an exact expression for
the probability that this relation is true.

The notation above is in common usage but hides
the symmetry between the three structure factors
entering into relation (4-1). We shall accordingly
denote the indices by h,, h, and h,, where

h,+h,+h, =0. (4-2)
Remembering that, for P1, F(h) = F(—h), equation
(4-2) means that if h; and h, are identified with h
and h’ respectively, then h; may be identified either
with h+h’ as in (4:1) or else h—h’. It is then easy
to show that the joint probability distribution of
Up, Uy, Upyn and Uy_y factorizes into a product
of the two probability distributions P(Uy, Uy, Upyy)
and P(Uy, Uy and Uy_y), which have exactly the
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same form. Thus, while the probability of the truth of
relation (4-1) is formally independent of Uy_y, in the
practical sign determination of Uy one considers both
Upiw and Uy p, and the larger of the two will
dominate. In what follows h, is to be understood as
referring to either h+h’ or h—h’, without prejudice.

The probability distribution P(E,, E,, ;) may be
easily written down, following the rules given in § 2.
The mixed moments

Mpgr = (§(h1)? §(he)?&(hg)"y
subject to h;+h,+h; = 0

(4:3)

are found by Bertaut’s method in Appendix D for PI.
The moment-generating function to the order 1;N32
is given by (2:15) and (2:17):
exp [—Jf(u%_*-ug_*'ug)] ¢ﬂ(uli Ug, uS)
1 ]'111
= ”Fé[l! 11! “‘“2”3J
A

1 ]'400 4 1 2
71ar01 01 TOYe o 1T 11 UteYe

17 2
+ R [ﬁ U U UG+ cyc.]

-+

1 2111 }'400 4
+t3_/2[1! 11 1!”‘“”‘3] {41 0!0!u1+°y°‘J

1

3
+6t3/2[1! 1T “luZ”"J ; (4-4)

here ‘cyc.’ stands for the cyclic permutations of the
indices; for example in the bracket in 1/t the terms are

1
11 (Aa00%1+ Aoao 23+ Agoa23) .

Inverting, and substituting values for 2,, from
(D-11), we find for the joint probability distribution
of B, (= Eyw), B, (= Ey), B3 (= Epyn)

1
P(E,, By, E5) = Cn)e exp [~} (B} + B+ Ef)]

1

1
x{1+mEIEaE3_W[

H,(E,)+cyec.]
1
+ i Hy (B H,(Eo)H,y (Bs)

1
Y (H\(E,)H,(E,)H3(Ey)+cye.]

1
T 8NE (H\(E\)H,(E,) Hs(E3)+cye.]

1

+ 5 (45)

Hy(By) Hy(By) Hy(By) + .. } ,

where ‘cyc.” now stands for the cyclic permutation of
the arguments of the Hermite polynomials, so that
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the expression is symmetrical in E,, B, and E,, as
required. To obtain a general idea of the form of the
distribution we have computed the sections of
P(E,,E, E;) at E, =0 and E, = 2 for the case of
N = 10 equal atoms. The results are plotted in Fig. 3.

1

N

Up=

(=]

Fig. 3. Two sections of the joint probability distribution of U,
Un and Unyn for space group P, calculated from equation
(4-5) for the particular case of N = 10. (a) and (b) show
the distribution of Uy’ and Unsn for Up =0 and Up =
0:63 (i.e., Bln = 2) respectively.

The contours in (a), reading from outwards in, are 0, 0-01,
0-05, 0-1, and then in steps of 0-1 to 0-8; in (b) they are 0,
0-010, 0-025, and then in steps of 0025 to 0-150. These
values have to be divided by (27)%2 to obtain normalized
values.

The outermost zero contour is obtained not from the
probability theory, but from the inequality (4-7).

The contours of P fit very smoothly into the outer-
most surface P = 0, which is obtained quite inde-
pendently of the probability theory by means of an
inequality to be described in the next sub-section.
This shows that our theory (including terms up to
1/N°2%) gives the correct form of the probability
distribution, even for relatively high values of E,, E,
and E,. The approximation obtained by including the
terms only as far as 1/N# gives an accurate description
only in a relatively small range near the origin
E,, E, < N%. This will be clear when we study the
form of (4-5) in more detail later.

JOINT PROBABILITY DISTRIBUTIONS OF STRUCTURE FACTORS

4-2. An inequality relating Uy, Uy and Up w

Karle & Hauptman (1950) have described a very
general method of constructing inequalities among a
set of m structure factors Uy, whose indices are
linearly related. The relevance of this to the calcula-
tion of the probability distribution of such a set, is
that the limiting case of the inequality (i.e. equality)
demarcates a forbidden region in the m-dimensional
space formed by the axes Uy, irrespective of the
number of atoms in the unit cell. An example of this
has already been given in the case of P(Usy, Un),
where the curve Uf = 4(14U,y,) gives the outermost
boundary of the possible range of the structure factors.

For the particular case in hand, we can apply
Karle & Hauptman’s (1950) equation (34), to obtain

|NUn o~ NUs Uyl s% (NP N2 U2)H(N2— N2 U%)t .
(4-6)

Cancelling the factor N, squaring, and writing in a
form symmetrical in the three structure factors, we
obtain finally the desired inequality

2Un Up Upyp = U+ U+ Upyn—1
or
UnUp Unyw 2 3(Us+Up+Uhpn) =% . (&7)
It
Ui+ U4+ Ukiw =1, (4:8)
then UpUyp Upyp = 0, which means that the S.C.Z.
relation (4-1) must certainly be true in the region
outside the unit sphere. This condition (4-8) does not
appear to have been noticed before (but compare
Cochran (1952)). It would seem to be of practical use
only for very simple crystals. Not all the region outside
the unit sphere is permissible, only that contained
within the limits set by (4:7).
For brevity, writing
Uh =z, Uh' =Y, Uh+h’ =z, (4.9)
we see that the allowed region of variation of z, ¥
and z is bounded by the surface
zyz = F(@P+y*+2?)—%. (4-10)
Fig. 4 shows a photograph of a model of this surface
x
inscribed in the cube —1 < { y ] <1, It looks like a
z
tetrahedron with curved faces, and in fact we might
call it a ‘parabolic tetrahedron’ since a section con-
taining a face diagonal of the cube is a parabola (in
contrast to a triangle in the case of a tetrahedron).
It is easy to show that sections of the surface parallel
to a cube face are ellipses. For a section at > 0, say,
the major semi-axis has a value (1+x)?, and lies in the
direction z = y; the length of minor semi-axis is (1—x)}
and lies in the direction 2 = —y (see outermost con-
tours in Fig. 3). When « is negative, the directions of
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Fig. 4. A model of the surface ruz = §(x?+y*+2*)—} set in
thoe cube —1 <2 <1, —-1<y<l, —-1<z<1l.

Sections of the surface pﬁnllltl to a cube face are ellipses,
and two of the three such sets of sections are indicated,
one by pieces of cardboard and the other by wires.

The surface encloses the allowed domain of variation of
(-“h = I, {"'h' = 1, !-'h-.h‘ = Z.

the major and minor axes are interchanged. It is also
easy to show that a a section meets the sides of the
bounding square at (y = 1,2 = x) and (y = x, z = 1).

Kitaigorodski (1954) has proved that the product
UpUnUp.y has a minimum* value of —}. It is easy
to derive this result from the more general inequality
(4:7). Taking a section at x > 0, as in Fig. 3(b), the
minimum value of yz occurs at the points of inter-
section of the bounding ellipse and the minor semi-
axis y = —z, i.e. at +y - {3(1—=)}*. Hence,
for fixed #, the minimum value of yz is —}(1-x)
and that of xyz is —1(x—=22). It then follows that xyz
will have an absolute minimum at x = } of value —}.
By symmetry, minima will occur at the cyclic permuta-
tions of (4, 4, —1).

We note, incidentally, that it can be shown in a
similar way from the Harker-Kasper inequality
Usp = 2U3—1, that the minimum value of U,,Uj is
also equal to —}.

4-3. Characteristics of the probability distribution

P(Ew, Ey, Ey.y)

To get some insight into the nature of the distribu-
tion expressed by (4:5), and also to obtain an ex-
pression for the probability that the S.C.Z. relation
(4-1) holds, it is necessary to hold either one or two
of the variables Ey = E,, Ey. = E, and Ey.y = Ey

* "Maximum negative’ would give the vorrect emphasis.
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fixed, and to calculate the corresponding conditional
distributions.

The conditional probability P(E,| E,, E;) may be
expanded in the form of a Gram-Charlier series
(cf. (3-10)).

Pr,. ﬁ'Q{Eﬂ = (V(27!)U£g, E-_;]_l
X< exp [_ (El _<El>£s. 53)21’202&':‘83]
+ term in g

(4-11)

In what follows the third moment about the mean is
very small or zero (as the reader may check for him-
gelf by drawing the curve (‘Ol"l‘(‘.’ﬁpﬂndm;, to a line of
constant K, or E; in Fig. 3). We shall thus omit the
corresponding term completely, so that we are dealing
only with Gaussian distributions. It is only necessary
to calculate the mean (E,)p, p, and the variance
0%, 5,(E,) as functions of E, and E, This may be
done by means of the operations uutlmul in Ap-
pendix E.
We find, to the order 1/N??2, that

<EI>£2. E3

BB, [— Hy(Ey)Hy(Eq)— H,y (Ey) Hy(Ey)]

:_V_i 2 \ 3/2

8\3‘3[ Hy(E)H,(Ey)— H,(Ey)Hy(Es)]

; -
— g [Hu(Ba)+H ()] i

and

| ~ o (FaEa) + H(Ea)) 3, (1 B3~ B3)
th.‘-;..f-:a("::}= 1 ————,
iN [Hy(Ey)+H (Ey)]
(4-13)
1 1

=1 'T}_:{, (E‘::' }‘:g} ) (413“]
expanding the denominator by the binomial theorem.
These functions are plotted for the case of N = 10
equal atoms in Figs. 5(a) and 5(b). They are, of course,
symmetric in £, and Ey, but cannot be expressed only
in terms of the product K,E, and its higher powers.
The expressions involve products of mixed powers of
E; and E, This is illustrated by a comparison of
Figs. 5(a) and 5(c). In the latter we have simply

p]nltwl F oll4, which is the correct approximation

of order l_,.\i to the mean (E,). To the same order the
variance is unity, and if these approximations are
substituted in (4:11) we obtain (with a slight reversion
in notation)

P(Ey) = (27)7} exp | ~ (=53 BwBuin)? ] (4:14)

which is the cxpression originally obtained h)_' Wool-
son (1954). It will now be clear that his results are
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Fig. 5. Regression of (@) the mean, and (b) the variance, of En
(4-12) and (4+13) respectively. The hroken lines in (a) are obt

on Ey and Ep,y, for PTI, N = 10, calculated from equations
ained by extrapolation, since the approximation used (of order

1/N3/2) breaks down at very large values of E. (c) and (d) show the mean (= 1/N? Ey En+n) and variance (= 1) respectively
for the approximation to the order 1/N% (Cochran & Woolfson, 1955).

accurate only to the order 1/N#, and will apply only
over the range of values of E small compared with N%.
The approximation correct to order 1/N3* is given
by substituting (4:12) and (4-13) in (4:11). We have
not plotted out the distribution P(Ey) for our example
of 10 atoms in the cell, since, as already stressed, it
is not simply a function of the product Ey By pn. We
should have to plot a family of distributions for various
combinations of Ky and Ep,u. The form of this
distribution, however, is clear from Figs. 5(a) and 5(b).
As E,. and E,_, increase, the mean increases rather

less slowly at first than 1% By By, w along the diag-

onal, but the variance falls fairly rapidly below the
value unity, the contours being approximately
spherical (cf. equation (4-13a)). This means that the
distribution becomes much sharper around the mean
that Woolfson’s approximate formula (4-14) would
suggest.

To show the general character of the distribution,
we have used (4-12) and (4-13) to compute the prob-
ability that Ej has the same sign as the product
EwEy,y irrespective of the value of Eyn. This prob-

/
ability is easily shown to be equal to @( meat >,

variancet
where @ (x) is the standard statistical integral

z

D(z)

(2n)éS

The results are plotted in Fig. 6, and it is satisfying
that the computed contour P = 1 falls so close to the
unit circle EZ+ E3 = N, as is required by the condition

exp (—3u?)du.

-0

(4-15)

316

E——

Fig. 6. The probability that Epn has a positive value, irrespec-
tive of its magnitude, as a function of En and En+in';
P1, N = 10. Computed from equations (4-12), (4-13) and
(4-15).

A plot of the approximation to order 1/N# would give a
set of rectangular hyperbolae similar in appearance to
Fig. 5(c).
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(4-8). The plot is intended to be only illustrative in
character, since, in any application of the theory, the
magnitude of £, will always be known.

The probability P, (E,) that E, is positive, taking
into account the (known) value of E, is calculated as
follows. When the form of the probability distribution
of a random variable is Gaussian, as is that of E, in
(4+11), then it follows quite generally from the reason-
ing of Cochran & Woolfson (1955, § 4-3) that the
probability that it has a positive sign is given by

(4:16)

E
P (B,) = }+} tanh {M} _

variance

For our problem, the mean and variance to be sub-
stituted in this are given by equation (4-12) and (4-13)
respectively. If the terms of order higher than 1/N%
are dropped, (4-16) reduces to the result of Cochran &
Woolfson (1955) (their equation (4-16)). The effect of
retaining the higher-order terms in (4-16) will be
obvious from the example plotted in Fig. 5 and dis-
cussed in the last paragraph. At high values of £, and
E,, P, (E,) is higher than would be suggested by the
simple Cochran & Woolfson equation. The effect is
entirely analogous to that discussed in § 3.22. Cochran
& Woolfson’s (1955) equation (4-16) thus gives an
underestimate of the probability when the structure
factors involved are large. This should be borne in
mind in deciding on weightings for the S.C.Z. relations
in a method for sign determination such as, say, that
of Cochran & Douglas (1955) or related methods. In
practice it would be very tedious to use the correct
weightings given by equations (4-16), (4:12) and (4-13)
above, but the theory does suggest that S.C.Z. rela-
tions involving very large structure factors should be
kept in a separate class, or classes (cf. Cochran &
Douglas), rather than attempt to use the simple
approximate formula uniformly for all the sign rela-
tions.

Since in (4-12) E, and E,; occur only as products
of odd powers and in (4-13) only as even powers,
P_(E,) as calculated from (4:16) also gives the prob-
ability P, (E,E,E;) that the sign relation (4-1) is true,
when values of |E,| and |E,| are substituted, in (4-12)
and (4:13). It will be noticed, however, that the
expression is not completely symmetrical in E,, E,
and E,. This asymmetry arises from the manner of
derivation of (4-16) from (4-11) in which one of the
three structure factors is singled out. The correct
expression for P (E,E,E,) may be calculated from the
joint distribution P(#,, K., E,), equation (4-5), by
using Bertaut’s equation (3-22). In the latter P, is to
be interpreted as the terms in (4-5) which are odd in
E,, E, and E,. This is obvious from the form of (4-1a)
and the fact that the only powers EYELE; occurring
in (4-5) are those with p, g, r either all odd or all even.
(It may be proved quite generally by the methods of

AcCc1l
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Appendix D that moments m,, with mixed odd and
even indices all vanish.)* The result is

P (B, EyEs) = }+3%

1
Wi | B EyEy| +terms in Nia/zin (4-5)

X

B

1 1
_1 ~aW [Hy(E,)+ceye.]+ 5N Hﬂ(El)H2(E2)H2(E3)—
(417)

The last equation may be compared with that ob-
tained after substituting in (4-16) from (4:12) and
(4-13). It will be found that some of the 1/N3? terms
in E, are missing in the latter. The departure from
complete symmetry, however, is only slight and the
general arguments given in earlier paragraphs are quite
unaffected. On neglecting all terms beyond those in
1/N?%, equation (4-17) reduces to the result of Haupt-
man & Karle (1953, equation (3:30)).

4-4. The statistical theory of Sayre’s equation
For the case of equal atoms, Sayre (1952) proved
that
L =L S0, U (4-180)
N H v h’~ h+h’ >

where H is the number of terms in the summation.
In other words, as shown by Hughes (1953) and
Cochran (1953),

Up=NUpUpn™
or

En = N{Eg By ™, (4-18b)
Sayre’s equation is strictly true only over an infinite
range of h’. Cochran & Woolfson (1955) have studied
the probability distribution of the values of ‘a Sayre
product’ Ey Ey 4 for a fixed value of Ey, and their
expression (4-1) will be accurate to the order 1/N?%
since their derivation is essentially based upon Woolf-
son’s equation (our equation (4-14)). It is possible to
carry out a derivation on similar lines but based upon
the more accurate formulae given earlier in this sec-
tion. This is, however, very tedious and we shall not
give the calculation here. Instead, we shall content
ourselves with calculating the mean value and variance
of a Sayre product En By, p as a function of Ey by
the methods of Appendix E. Note that, while Sayre’s
equation (4-18) is the average over a range of values
of h’, our whole theory is based upon averages over
the atomic positions r. From the symmetry of the
trigonometric form of £(h) (equation (1-4)) in h and r

* This statement is true only in the general case. There
can be exceptions, however: e.g. if E, = Ep, K, = E3p,
E, = Egp, then myy, = 2.

I am indebted to the referee for this remark, and also for
some other suggestions for making the paper clearer.

37
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we expect that the two averages will yield the same
result (see Hauptman & Karle, 1953, equation (3-17)).
We shall soon see that this is indeed the case.
Writing Eyn = By, Eypyn = E,, En = E;, we find
from equation (E:14), together with (E-13) and (E-18),
that
1 1

— By— 5 Hy(E,)— 5 Hs(H3)
N3 2N gN32
<E1E2>E3 = 1
1—§Z_VH4(E3)
1 1
— | Hy+ == Q (&, )}
(5o
_ N : 8N ’ (419)
I_S_NHzl(Es)
where
Q) = —{4H z)+H (:r)} . (4-20)

Now (E,E,yz, must by (4-18b) be strictly equal to
NéE It is clearly so to the order of approximation
1/N%, as was first shown by Cochran & Woolfson
(1955, § 4-1). Despite the appearance of (4-19), Sayre’s
equation is also obeyed to the order 1/N®?since it may
be proved that

z+AQ(x
2
so that (4-19) reduces to
1
(B By g, = Es: to the order s - (4:21)

The result (4:21) would seem to provide a demonstra-
tion of the general correctness of our statistical
methods, We would in fact expect that if we carried
the approximation to terms of order higher than 1/N*2,
we would nevertheless always obtain the result (4:21),
because our expansions are truly asymptotic.

From (E-14), (E-13) and (E-18) we may also cal-
culate the second moment (E}E3yz, of the Sayre
product E,E,, and hence the variance. We find

1 1
1— — H,(Ey) + — (E3—2)
. 4N VY N
0%, (B B,) = 1 , (4:22)
l—mHz;(Ea)
= 1+l (B3—2) (4-22a)
d N 3

on expanding by the binomial theorem. As may be
seen from the approximate form (4-22a) and from

Table 1. Variance of a Sayre product En By y
as a function of Ey

PI,N =10
En 0 05 1:0 15 2-0 2-5
Variance 0-79 0:82 091 1-02 1-18 1-48

JOINT PROBABILITY DISTRIBUTIONS OF STRUCTURE FACTORS

Table 1, the variance remains of the order unity for
all values of Ej, and indeed increases with Eg.

This behaviour is quite the contrary of any we have
found before for the variance. A moment’s reflection,
however, will show that this is just what we should
expect in the case of Sayre’s equation (4-18). When
Ey is large we may expect that some of the Sayre
produects will be much larger than the average, namely
those products for which the probability of the truth
of the S.C.Z. sign relation (4-1) is high, When Ej, is
small there will tend to be a smaller number of large
terms on the right hand side of (4:18a). The reader
can easily convince himself of the correctness of this
argument by imagining curves of constant E,E,
(e.g. Fig. 5(c)) to be laid on the top (%, = 0) and
bottom (Z; = 2) halves of Fig. 3. Larger values of
E,E, are possible in the case of the higher value of E;.
(Note, however, that in both cases the most probable
value of E,E, would still appear to be zero; and this
would account for the empirical results found by
Woolfson (1954) and embodied in his Fig. 1.)

It should perhaps be emphasized that the variance
given in (4-22) is that of a single term in the summa-
tion involved in Sayre’s equation. Strictly, we should
say from (4-21) and (4-22) that N3E,.Ey,p is an
estimate of Ey with variance N+ (£%—2) = N. Hence
the estimate of E, through the Sayre equation,
including, say, s terms,

En= Nt SEyEyin
-

has a variance N/s. Ideally s is infinite, so Sayre’s
equation is strictly true. In practice, on certain reason-
able assumptions (see below, § 5-2), s < N2, so that
the variance of the estimate through Sayre’s equation
is ~ 1/N, which is still very small. More precisely, to
the order 1/N?%, the probability of the truth of Sayre’s
equation is (cf. (4-16))
P (En) = %+ % tanh {N~3| By %' EnEnip} s

a result which has already been obtained by Cochran
& Woolfson (1955, equation (4-20)). We have how-
ever couched the argument in terms of the variance
of an estimate in order to foreshadow § 5.

4-5. Probability distribution of En, Ey and Ey  y when
the atoms are not equat

The general form of the distribution is given in (C-8).
The required non- vamshmg cumulants k,,. for space
group P are given in (D-11). For comparlson with
the results of other workers we express the results in
terms of

N
E (17 (Bertaut, 1955a, b) (4-23)
= ¢&,/ejf*  (Cochran & Woolfson, 1955) (4-23a)

instead of the £, of our equation (C-4). Note that
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Cﬂ = 2,,/’/&
=2,/2 for P1. (4-24)
We obtain
1
P(E,, E,, B3) = @y <P (=3B~} B33 E3)

x {1+2,B,E, B,

2
— % [Hy(By) + eye.] + 2 Hy(By) Hy(By) Hy(By)

- %5 [H,(E\)H,(E,)Hy(E3) + cyc.]
%424

8
6
+ higher order terms} .

(H,(E,)H,(E;)Hs(E,) + cye.]

+ H3(E1)H3(E2)H3(E3) (4-25)

In this equation we have kept the same ordering of
terms as in (4-5), to which (4:25) reduces when the
atoms are all made equal, since then

2, = 1Nz 1. (4-26)

The term in zg in (4-25) has been given by Hauptman
& Karle (1953, (3-30)) and by Bertaut (1955b).

We may now apply the methods of Appendizx E
to obtain various characteristics of the distribution.
Comparing (4-25) with (E-8), we have

Bur = —2s Booa = —24/8, Pooe = 2/8,
Bus = 252, Pus = 23%/8, Pass = —25/6.

(4-27)
The generalizations of (4-12) and (4-13) are
z
23E2E3—§5[Ha(E2)H1(E’3)+H1(E2)H3(E3)]

B [ () H, () + H, () H )]

<E 1>E2, By =

%4
1—-§ [Ha(By)+H,(E)] (4.28)

and

1~ 24 [, (8,) + Hy(B;)] +A[1 - B3~ E]

GZEz,E;; (El) = 2
1- Z‘ [Hy(E2)+H,(B,)]
(4-29)

S142(1-Ei-E2). (4-29a)

Comparing (4-13a¢) and (4-29«a), the variance decreases
faster from unity for large values of £, and E; when
the atoms are unequal, since in this case

zy > 1[Nt (4-30)

The probability of the truth of the S.C.Z. relation
(4+1) is now

531
P, (EB\EE;) = §+4%

23| E E, B3]+ terms in 25, 232, and 25 in (4-25)]

2
1 —%“ [(Hy(Ey) +cye.]+ %3 Ho(E1)Hy (Ey)Hoy(E5)

(4-31)

To the order z,, this result agrees with the expansion of
the closed expression obtained by Cochran & Woolfson
(1955, equation (4-16)). Comparing (4-31) and (4-17),
and noting (4-30), we see that the efficiency of sign
relationships is improved when the atoms are unequal,
a fact already noticed and explained by Cochran
(1952) and Sayre (1953).

When the atoms are not equal, Sayre’s equation
(4-18b) is no longer strictly true. However, Cochran &
Woolfson (1955) have derived a statistical form of
Sayre’s equation

—
Vh=UpUpin" = 8—-”‘ Us (4-32)
2
or
EyEy " =2,Ey (4-33)

which is true on the average (in the sense of least
squares) over all h. In our theory the generalization
of (4-19) is
zaEa"% Hy(Eg) — % H(E;)
By By, = 2 ’
1-2 H,(Ey)

(4-34)

and, although the factorization which led to (4-21)
in the case of equal atoms is no longer possible,
(4-34) may be simplified by writing it as

A
2\ %5
o a3 B o)+ ()~} (2 -2, o B

= 3
2

1-2H,B,)
which, by (4-20) and (4-20a), becomes

z
3 (%"f) Hy(B5)
(BrByyg, = mpllyt ——=——— . (4:35)
-3 Hally)

To the order z;, this result agrees with Cochran &
Woolfson’s equation (4-33) above, but we see that
there are correction terms to the latter, particularly
important for large E;, when z, differs appreciably
from z,/z,.

For the variance of a Sayre product E,E, we find

12 Hy(By)+ (B3 -2)

XAR . (+36)

I—ZH4(E3)

37+
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= 1+25(H5-2). (4-36a)
Here again the variance is increased as compared
with (4-22a).

While our results are more accurate than those of
Cochran & Woolfson, it should be noted that theory
given here takes no account of the physical basis of
the result (4-32). The value of Cochran & Woolfson’s
approximate method of calculating probabilities is
that it brings to the fore the connexion between the
sign relations and the squared structure (see left-
hand member of (4-32)). Thus, while it is not so power-
ful nor indeed so simple as the full statistical theory,
it is nevertheless invaluable for general discussions
of the phase problem.

5. The phase problem

5-1. Order of a sign determining relation

Provided that there is a linear relation between
their indices, a sign relation or else a sign-determining
relation* can be found between any set of structure
factors. We shall denote such a relation by
R(Ey,, Ey,...). The a priori probability of the truth
of the relation can be found by the mecthods given
earlier. It should also be possible in every case to find
an inequality between the structure factors involved
by the method of Karle & Hauptman (1950). As in
the cases of the two relations studied in detail in this
paper, the probability distribution will tail smoothly
in the bounding contour set by the limiting case of the
inequality.

Now it is clear that not all relations that can be
derived are equally powerful or effective. The question
arises whether there is a simple method of classifica-
tion. The theory given above suggests a natural
classification according to the lowest power of 1/N?%
that enters into the probability distribution between
the structure factors involved in the relation. More
precisely, we define the order of a relation as the order
v = p+g+r... of the lowest-order non-vanishing
mixed moment my,,  for the structure factors in-
volved. The leading term in the asymptotic expression
for the probability will then be of order 1jN*/23-1,

The sign-determining formula (3-25) between E,,
and Hy (lowest moment m,,), and the S.C.Z. sign
relation (4:1) between Ky, By and Ep,, (lowest
moment myy;) will then both be of order 3. An ex-
ample of a relation of higher order in space group P1
is the much-discussed formula X, of Hauptman &
Karle (1953, equation (4:06))

S(Hw) ~ S{z (B —1) (B 1) } (5:1)

h’

The formula is based on the probability
* It is also possible to find relations between magnitudes,
but these are of no interest for the phase problem,
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1
8N3/2

P, (Eem) = 3+ (Bo=1)(Efmw—1), (52)

which arises from the non-vanishing moment m,,,.
The relation (5-1) is thus of order 5. Cochran & Woolf-
son (1955) have shown that, despite the large number
of terms in it, (5-1) gives a less reliable indication for
the sign of Ky, than does the single term FEj -1
(our equation (3-25)). The reason is that (5:1) is of a
much higher order. Furthermore, Cochran (1954) has
derived the exact relation

Eop = N2, —1)-N(Ep—1) (Eiw—1)"], (53)

which supersedes the statistical formula (5-1), and
which we shall discuss presently.

The mathematical operation of determining signs in
reciprocal space by means of sign relations has its
physical counterpart in various operations in physical
space. This was first pointed out by Cochran & Woolf-
son (1954) and Vand & Pepinsky (1954) soon after the
appearance of Hauptman & XKarle’s monograph, and
in fact was the basis of Cochran’s derivation of (5-3).
Thus R(E,p, Ey) is related to the Patterson,
R(Ey, By, Eyyp) to the squared structure, both of
which are functions of the second power of the electron
density. R(sy, By, Ep,p) is related to the squared
Patterson. If 7 is the power of the electron density in
the operation in real space corresponding to the sign
relation, it thus appears that the order of the latter
as defined above is equal to #+1. The correspondence
between operations in reciprocal and real space has
been recently emphasized by Bertaut (1955c).

We shall now discuss why higher-order relations
become much less useful as the number of atoms in
the cell increases. The power or efficiency of a relation
for sign estimation is given by the deviation of the
probability from 3}, i.e. its bias. This bias will be
« 1/N**~1 where v is the order of the relation. All
relations will thus be weakened as N increases, the
more so, the greater ». Alternatively, from the point
of view of the last paragraph, the higher-order rela-
tions will tend to fail because the number of peaks in,
say, the (sharpened) Patterson, or its convolution
with the structure etc., will increase as the number of
atoms in the unit cell increases. Thus the determination
of the signs of K, in space group P1 depends on spot-
ting (equation (3:25)) or cancelling out (equation (5-3))
all peaks in the Patterson except the peaks at +2r;
(Cochran, 1954). This will become increasingly difficult
as the number of peaks increases, since there will be
more and more ‘chance’ peaks lying close to the
neighbourhood of a +2r; peak. Only if there is a
sufficiency of data to resolve the peaks completely
(Cochran, 1954) can we expect the method to succeed.
Even then, there could always be a chance coincidence
of one of the cross peaks r;—r; with a 2r; peak, and
the likelihood of this increases with N.
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5:2. The variance of a relation

The weakness of high-order sign relations when N
is large may perhaps be understood more clearly by
considering the variance of one of the terms contribut-
ing to a sign relation. We shall again consider the
example of (5-1).

The joint probability distribution of Esy,, B, and
By n may be very easily found by the methods of
§ 2 and Appendix C. The first non-vanishing mixed
moment is m;,,. (Strictly speaking the lowest-order
moments are Mg, Mgy, etc., but these do not in-
volve all three structure factors.) The next is myg,,
and so on, but we shall confine ourselves to the leading
terms in the probability theory. From Appendix E

Broolisa+ - . .
Eo =
Ben) T30+ BosoL8a0+ Booal foa
1
AN (By—1) (B yw—1)
= 1 (54
I- 8N [Hy(Bp)+Hy(Epiw)]

an equation which is the basis of (5-1). In a similar
way the variance of By, for fixed values of E,. and
Eyiw may be shown to be unity, to the order 1/N%.

More relevant for our purpose are the mean and
variance of a single product (B —1)(E} n—1) =
H,(Ey)Hy(Ey,y) contributing to the sum in (51).
These may be found by the method of Appendix E,
§ b(ii). After a somewhat lengthy calculation we find

(B =1)(BRsn—1))py, = Bou/N? (5-5)
and a variance of unity. Hence one term
N(B—~1) (B in—1)

provides an estimate of E; with a variance of N3.
This result agrees with that found by Bullough &
Cruickshank (1955) by algebraic methods. As indicated
by these authors, if there are p terms in the summation
(6:1) the variance of this estimate will be reduced
by a factor 1/p. Now p will be approximately propor-
tional to the square of the number of reflexions ob-
served. On reasonable assumptions, this last number
will be proportional to the volume of the unit cell and
hence to the number of atoms in the unit cell, N, Thus
p < N2 Hence the variance of the estimate of E,,
through the sum (5-1) will be of order N. Now the E’s
are by definition normalized structure factors of
variance unity, so this variance is in effect enormous
when ¥ is greater than a very small number. Thus we
see that the reason from the point of view of statistical
theory for the failure of Hauptman & Karle’s X, is
that, although it does in fact contain the correct bias,
this is in practice not revealed, since the number of
terms in the sum is not enough to outweight the vari-
ance of each term. The physical counterpart of this
reasoning is given by Cochran & Woolfson (1954).
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It should be noted that the arguments are based
upon approximate formulae. From the results of
previous sections we should expect that the inclusion
of terms of higher order than 1/N®2 in the expressions
for the probability distribution and for the mean and
variance will have the effect of making the situation
slightly more favourable than as stated above. When
the E’s involved are large the variance of a single
product (Ef—1)(Ef,w—1) will be less than unity and
the efficiency of the estimate correspondingly in-
creased. As Cochran & Woolfson’s (1955) Table 3-1
shows, there will be some situations in which X does
give the correct sign, but an examination of their
arguments will show that this happens essentially
because Ey is large.

By a large value of E we mean one which is not too
small compared with its maximum value, i.e. N* in
the case of equal atoms. (The advantage of the U
notation, of course, is just that the effective value of
a structure factor is always kept before one.) Now the
probability distribution for the normalized structure
factor E is always approximately Gaussian with
variance unity (neglecting terms in 1/N and higher):

(27)~% exp (—3B?) . (56)

Thus while the probability of finding a particular
value of E is independent of N, this value will represent
an increasingly smaller unitary structure factor as N
increases.

As a measure of the probability of finding large
values of £ we may examine the distribution of the
highest value (extreme value) or second highest value,
and so on, of E. On the basis of previous assumptions
the number of observations of £ (i.e. the number of
reflexions within the limiting sphere) will be propor-
tional to N, say equal to ON. Then by Cramér (1946,
p- 376) the expected (or mean) value of the largest £
observed is

(B xiremey = (2log N}, O0~1, (57)

which decreases much more slowly than the square
root or a power of N (cf. remark of Bullough &
Cruickshank, 1955). Since any sign-determining for-
mula is of order 1/N%, or higher, as N increases it
will thus become increasingly rare to find E’s large
enough to use in, or even to start off, the process of
sign determination. This is immediately obvious if
we use unitary structure factors, which also have a
Gaussian distribution, but with variance 1/N. Then

<Uext,reme> = {(2 log 61\7)/1\7}é . (5:8)

Tt is therefore misleading to state, as Hauptman &

Karle (1954) did, that because (5:6) is always (ap-

proximately) obeyed, all structures are equally vulner-
able to attack by statistical methods.

5:3. Sign determination by means of a formula having
strict validity

One of the important effects of Cochran’s (1954)
introduction of the formula (5-3), having strict
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validity, into the discussion ranging round Hauptman
& Karle’s statistical formula (5-1) lies perhaps in the
fact that it focused attention on the desirability of
selecting the set of structure factors so that they were
strictly related by a formula derived either by algebra
or by physical considerations. It was thus seen that
while the formulae relating Esy, By and By, 4, (5-4),
(5+5) and (5-1) etc., were certainly correct, they were
nevertheless highly artificial in omitting ,, which
would certainly be known in magnitude and could
thus be taken into account in the process of sign deter-
mination of Ejyp. Cochran’s formula (5-3) showed how
to do this rationally.

From the point of view of probability theory we
should thus consider the set of structure factors
Eop, Ey, By, En. Besides the non-vanishing mixed
moment Myp9, Which led to (5-4) and (5-5), there are
now lower-order moments m,40, and mg,;; which must
be taken into account in calculating the distribution
P(Es, By, By y, Ey). The set of terms of order 1/ N2
in the latter would then include, besides that in m,,,
and those we have already considered in §§ 3 and 4,
terms arising from the set A3 (see § 2) like

Myg0aMo111 Hy (Bon) Ha (By) Hy(Enyy) Hy (Ey)
4 = mygpemigy Bon(Bf—1) (B n— 1) Hy(Er)  (5°9)
an
MioeMor1 (Esn—1) EwEpynHs(Ep) . (5°10)
The term (5-9) is obviously one in which the inten-
sities of By, Ey and Ey - all play a part together in
determining the sign of E,,, and is at least as im-
portant as (5-4). Indeed, by analogy with the case of
§ 42, where the probability theory gave Sayre’s
equation exactly, we would conjecture that if we cal-
culated the conditional mean {(Ey—1)(E} n—1)) as
a function of £, and E,;, from the full expression for
P(Eon, By, Ey v, Ep), we would arrive at the result

2 1
3 Bh—1) = 3755 Bon

corresponding to Cochran’s equation (5+3). The labour
involved in such a proof would be very great and
hardly seems worth while at this stage. We have
already discussed the implications of (5:3) and have
seen that the use of an accurate formula is still subject
to limitations that depend on the number of atoms
present in the cell.

Cochran (1954) also derived a number of third-order
formulae having strict validity, which determine signs
from intensities in higher space groups. We have
already discussed in § 3-4 the range of application of
one of these formulae. We shall now discuss a fourth-
order formula.

54, The fourth order formula in PT

5-41.—A formula having strict validity and useful
for yielding information about structure factors not
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all of the form Eyy, was derived by Bullough & Cruick-
shank (1955):

NE:=DEy™" = B n - (5-11)
The first non-vanishing moment in the probability
distribution P(Eyp,w, En, Ew) I8 myy, so the formula
is of the fourth order. It corresponds physically to the
convolution of the structure and the Patterson, i.e.
to the superposition method.

Hauptman & XKarle (1953, equation (3-31)) had
already derived the probability of K.,y being posi-
tive, namely

Py (Bonyw) = $+1/4N | Bon o | (B -1 By, (512)

an expression which we now see is accurate to the
order 1/N. (The first correction term in this expression
will be of order 1/N2) They had then used this ex-
pression to find their sign relation X,:

S(Eam o) ~ S{ >

2h-+h’=const.

(Eﬁ-l)Eh,} . (5:13)

Bullough & Cruickshank’s work thus showed that the
formula 2’5 has a basis that is strictly and not merely
statistically valid. However, while it is certainly
desirable to try to use formulae or relations having
strict validity, we must remember that the efficacy
of such a formula is still determined by the order of the
formula as defined above. The formula (5-13) expresses
the desired structure factor as a sum of contributions
involving the related structure factors. From the ex-
perience of § 5-2 it will be clear that the formula will
be useful only if the number of contributions is such
as to outweigh the variance of one of them. The
variance of a single term, we recall, is related to the
order of the formula.

In this case it is easy to show that the variance of
the product H,(En)H,(Ey)= (Ei—1)Ey is of the
form

2+41/N (function of By p)+... .

Hence the variance of N(Ei—1)Ey, which is an
estimate of Eqy p is

2N2+ N (function of Eyp,y) - (5-14)
For small or moderate values of By, p, the dominant
terms is 2N2, so that, to this approximation our result
agrees with that of Bullough & Cruickshank. (Cf.

§ 33, fur another instance where the variance as
calculated correctly from the statistical theory con-
tains correction terms to that found by the simple
algebraic methods.)

On our previous assumptions, the number of terms
in the summation (5:13) will be of the order N2,
so that the variance of the estimate of E,p,, through
(5-11) or (5-13) will generally be of the order 2. Only
for large values of E,p p can we expect the variance
to be much less than this, but these will occur only
rarely, as discussed in § 5.2; our former remarks will
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apply and we can ignore large values in a general
discussion. Now for an estimate to be effective for
sign determination its variance must be small com-
pared with unity (since (£?) = 1), and we see that
this is not the case here. Hence, although equation
(5-11) is a formula having strict validity like Sayre’s
equation (4-18), and can ideally be used in the same
way in the process of sign determination, it must in
practice be much less effective. From our point of
view the reason for this is that (5-11) is a higher-order
formula.

Despite this, it should be emphasized that the
variance of an estimate of E,y.y through 23 or
(5-11) is (approximately) independent of N. We should
thus not expect its efficiency to drop as IV increases,
as does that of the formula X, (equation (5-1)). In
this connexion, it should be noted that X5 played an
important part in the successful solution of the struc-
ture of p,p’-dimethoxybenzophenone by statistical
methods (Karle ef al., 1957). This is a fairly complex
structure without any atoms heavier than the rest,
and its solution would be creditable by any method.
However, without further investigation into the distri-
bution of the magnitudes of the structure factors in
this particular case and an examination of the Patter-
son, it cannot be concluded that the sign determination
will also be successful for all other comparable struc-
tures. Indeed, we should expect the reverse to be true;
i.e. that only occasionally (statistically!) will sign
determination by direct methods of this kind be
successful for complex structures with all atoms equal.
But only a good deal of experience can show just how
useful X, will turn out to be in practice.

5-42.—Some further points need to be made con-
cerning the order in which the formulae available for
51gn determination are to be used in the actual process
of sign determination. In P1, the only formula avail-
able for determining signs from intensities is either
(3-25) with probability calculable from (3-23), or else
the complete equation (5-3). The next step would be
either (i) to use the S.C.Z. relations (4:1) to extend
the signs available, or else (ii) to apply formula (5-11).
Cochran & Woolfson (1955, § 4:5) have suggested by
an example that higher probabilities for P_(Eop n)
may be found by following the first path rather
than the second. This does not seem to be necessarily
always the case, but it does raise the question of which
path is to be preferred, and we shall now consider what
our theory has to say about this.

Although the set of structure factors Eon.pn, Hy
and Ey, are related by the equality {5-11), there is no
reason why we should not at the same time consider
E,, as well. The formula relating the four structure
factors will now only have statistical validity, but its
power for sign determination will still be of the same
order, if not greater than that of (5-11). The non-
vanishing mixed moments of the set Eop p, Ens By
and E;, are myg;, Mgsprs Mas1g. and the expression for
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P(Esnins En, By, Eon) will contain among its terms
of order 1/N, not only the term

;'1210

1211 o0 Eopon(Ep—1)Ey

(5-15)

corresponding to (5-12), but also the term

2'1 011 2’0201

Tl 1TTi0T2 01 11 Penar (Hh—1) By (3 —1) , (5:16)

which arises from the set 1/} in equation (2-17).
Putting in values for the mixed moments, we find to
the order 1/N

P(Espyws Eny By Eon) = (272)72
x exp [—3(Espin+cye.)]
1
{1+2Ni (Ea—1)Eon+ ﬁE2h+h’Eh’E2h
1

+§ZVE2" w(En—1)Ey
1
2N Eop v (Ey—1)Ey (B —N [Hy(E)+ cye.]
+_ZV’H2(E2h+h')H2(Eh')H2(E2h) SN H(Ey)Hy(Eop)
-+ terms in 1/N3? etc.} . (6-17)

Let us consider the sign of Ey as known. When
the sign of F,y, is unknown, the second (non-constant)
term in (5-17) corresponding to the S.C.Z. relation is
of no use, and we have approximately

S(Ban ) ~ S5 3 (B ) B (B~ 1) By (B 1)
(5-18)
- 8] X (B 1)Ew i) (5:19)

The two terms on the right-hand side of (5:18) cor-
respond to the paths (i) and (i) above, but we now
see that there is really no question of preference of
one above the other. Path (ii) based on the fourth-
order formula, and path (i), which is equivalent to
using two third-order formulae in succession, are of
equal power (order 1/N) and must be used together
as indicated by (5-19). It is not correct to say, as did
Cochran & Woolfson (1955, § 4-5), that the sign-
determining formula (5-13) of path (ii) is not really
independent of the lower-order formulae (3-25) and
(4-1). The correct point to make is that (5-13) is not
any more powerful than the latter two formulae used
in succession, and indeed that the latter path makes
use of the known magnitude of E,,. When |Eo,| > 1,
the sign of the contribution from paths (i) and (ii)
separately will agree with that found from (5-19).
When |Eyy| < 1, 1.e. B,y is weaker than the average
structure factor, the two paths (i) and (ii) would give
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discordant results, and hence particular care must be
taken to use the full formula (5:19) in which the two
paths are essentially given their correct weighting.

The result (5-19) appears to be new and to supersede
both Hauptman & Karle’s formula (5-13) and Cochran
& Woolfson’s prescription when the sign of £y, is not
to be taken into consideration. With this proviso, it
is formally correct. However, as soon as any signs of
the E,, become available, they must be taken into
account in determining the sign of Egy, .y by means of
the S.C.Z. relation between Eop .y, By and Egy,. From
Bertaut’s equation (3:22) and (5:17), the probability
that Eop.n- Is positive or negative is

Pi (E2h+h') = ‘%i%

1 o 1
oN |Eon o | (B —1) By By + Ni |Eonsn|EpEon
%

1

1
+mE2h(E§—1) + terms in —

1
N

(5-20)

When E,, is ignored, we arrive at (5-19). When it is
not, (5-19) must be replaced by

S(E2h+h’) 7
s { >

2h,h, h’

[terms in square brackets in (5~20)]} . (5:21)

In practice, however, the S.C.Z. relation, being of
order 1/N¢, will dominate in the estimate of the sign
Eon 1w This is clearly revealed when the denominator
of (5-20) is expanded by the binomial theorem, and
terms higher than order 1/N are omitted:

l 0 23
P,y (Eonip) =313 [ﬁlEzhu'[(Ei—l)Eh'Eih

1 1
TN |Eonsn | B Bon {1 ~ NI Eon(Eq — 1)”

= 3+ iN"H By p| By Boy, -

This is the result we would get from the S.C.Z. relation
alone. The contribution from the terms corresponding
to (5:19) in (5-21) is thus negligible compared to that
of the S.C.Z. terms.

5:43.—In higher space groups the non-vanishing
moment myy, correlates (Bertaut, 1956b) structure
factors of the same class, i.e. those undergoing the
same change in sign when the origin is changed. Thus
in space group P2,/a, a relation will be obtained which
enables one to compare the signs of two structure
factors Ky and Ej.p-, where A’ and A’ differ by
an even integer, 2k, say, and ' and I'" differ by 2!
(see Hauptman & Karle, 1953, Table 11, Case 5).
The statistical relation analogous to (5-12) correlates
By and Eypp» through the magnitude [Eap y ol
Since % is a free index, the relation as used in practice
contains more than one term. Likewise, the signs of
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Eyypy and Epq are correlated through the magni-
tude |Enxi| where £ = }(k'—k"), and % and [ are free
indices.

Bertaut (1956a, b) has made great use of the fourth-
order relation in higher space groups, involving the
moment m,,,, to solve a number of structures. It seems
that the solutions could equally well have been ob-
tained by using first the analogue of (3-25) and then
the S.C.Z. relations.

To facilitate the derivation of the relation in higher
space groups, Bertaut (1955¢) has developed a most
ingenious ‘structure-factor algebra’, and has published
(Bertaut & Dulac, 1955) tables of relations so ob-
tained. The method is exactly analogous to calcula-
tion of the sets of structure factors for which the
moment m,,, does not vanish, but its advantage is
that these sets are given easily and automatically.
The structure-factor algebra is useful for other pur-
poses and may also be used to generate higher-order
relations, but Bertaut has not done this. In view of
what we have already said concerning the weakness
of relations of order higher than the fourth, it would
not, however, seem worth while to do this.

5:5. Formulae available for sign determination in P1

In their latest approach to the phase problem,
Hauptman & Karle (1957) stress the importance of
formulae having strict validity. The discussion in
§ 5-42 should serve to show that there is no particular
advantage attached to such formulae. The desirable
thing is to group all useful formulae of the same order,
whether derived algebraically or else arising from
successive application of lower-order formulae, and
whether they are strietly or only statistically vahd.

In PI, the only third-order formulae available are
(3-25) and (4:18). The fourth-order formulae available,
apart from (5:19) based on the moment m;;,, will be
those based on the moments m,,;; and m;5. The first
involves four structure factors Ey,;, connected by the
condition

h,+h,+hs+h, =0,

and it is easy to show (Simerské, 1956) that there is
in fact an exact relation between them,

hythet+hg—hy 1

EhlEh2Eh3 N

By, .

The use of this formula will require knowledge of three
of the signs of the E’s involved, and it will clearly
not be as useful as the S.C.Z. relation. We shall not
discuss it here (see Simerskd (19566), who has tested
the relation on a known structure). The moment m,q
relates the structure factors g, and Ey. The relation
is one between signs since only odd powers of Ej,
and E}, will be involved. The correlation is of order
1/N and is thus weaker than that between E,, and Ey
(order 1/Nt). We shall not discuss it any further.
(See Cochran & Woolfson, 1955, § 3-5.)
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From our general remarks it will be clear that the
fifth-order formulae will be too weak to afford reliable
sign indications. Hauptman & Xarle (1957) have
listed a number of these and have expressed the hope
that standards of significance may be set up for the
reliability of means computed from the formulae, and
suitable laws of rejection then established. The meth-
ods of the present paper may be used to write down
probability distributions corresponding to all the for-
mulae listed, and hence to estimate their reliability.
We have not done this since we do not believe that
any of the higher-order formulae will turn out to be
useful in practice for anything but the very simplest
structures.

Indeed it seems to us that the most useful approach
to the phase problem is to concentrate on the low-
(third-)order formulae, and to try to discover some
systematic method of application. The first attempt
in this direction was the method of Cochran & Douglas
(1955), which sets out to find the signs of a limited
set of structure factors so that the S.C.Z. relations
are generally obeyed. More recent attempts in the
same direction are those of Woolfson (1957) and Grant,
Howells & Rogers (1957). It seems likely that this
approach will eventually extend and return to Sayre’s
(1952) original method of finding a set of signs for all
the structure factors that obey the complete Sayre
equation (4-18z). The generalization of this kind of
approach to finding a set of signs obeying the fourth-
order formula (5-11) might also repay some study.

The work was stimulated by a colloquium given by
Dr E. F. Bertaut in Cambridge in April 1956. It was
done in the summer of 1956 at the Cavendish Labora-
tory, and I am grateful to Dr M. F. Perutz for his
hospitality. I would also like to thank Dr W. Cochran
for many helpful discussions during that time and for
his general interest, and Dr H. E. Daniels for a general
discussion of probability theory.

I wish to record the help of Mrs K. Cratchley and
Mr A. Page with the computations and drawings.

APPENDIX A

Generating functions, moments and cumulants

We shall here briefly summarize the fundamental
theorems of probability theory concerning generating
functions used in the text. Full treatments are given
in such standard works as Kendall (1943) and Cramér
(1946).

Let f(z) be a probability distribution function of the
random variable z, for simplicity supposed to have
the mean value zero, and where, as usual,

Soo flx)de =1.

—C0

The moments m, are given by
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My = Soo x'f(x)dz (A1)

and it is convenient to introduce the moment generat-
ing function (m.g.f.)

M(u) = & (exp [ux])

Soo exp [uz]f(z)da

1l

u? ud
2—Im2+ﬁm3+... .

1-++um, -+ (A-2)
Here the symbol & stands for the operation of finding
the (mathematical) expectation or mean value of a
function. Thus the mean value of a function y(z) of
the random variable z will be written

[o2]

p(@)f(x)de , (A-3)

-0

Ey(x) ES
The Fourier transform of f(z),
C(u) = & (exp [tuz]) = Sw exp [uz]f(x)de, (A-4)

is known in probability theory as the characteristic
function (c.f.) and may also be used to generate the
moments, since
. . (1u)?
Cu) = M(iu) = 1+wm1+T Mo+ ... . (A-5)

The great utility of introducing the m.g.f. or c.f.
lies in the ease with which the probability distribution
of a sum of random variables may be calculated. If
we have two random variables #; and z,, with distribu-
tions f(z,) and g¢(z,), the distribution of their sum
X = x,+x, is given by
P =\ sx-vg)do. (A-6)
Then, by the convolution theorem, well known to
crystallographers, the c.f. (Fourier transform) of P(X),
which we shall denote by Cx(u), is simply the product
of the c.f.’s of f(z) and g¢(x):

OX(u) = C::l(u’)o:cz(u) .

Then P(X) is obtained simply by taking the Fourier
transform of (A-7):

PX) = §°° Cxu)exp [—uX]du. (A-8)

(A7)

27

In the case where the two random variables have
the same probability distribution f(z),
Cx(u) = [C.(w)]?.

The last result is easily generalized to the case of the
sum of ¢ random variables:

X =z +2a+.. .+, (A-9)
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Here

P(X) = %ﬂg Cx(u)exp [—iuX]du, (A'10)
where )

Cxw) = [C.w)]

Note that there are exactly analogous results for
the m.gf. M (u), and in practice it is more convenient
to work with the latter to avoid having to use the
complex 1.

When X is a linear combination, rather than a sum,
of random variables

(A-11)

X = aqyzt+agzy+ ..+, (A-12)
then (A-7) is easily generalized to
Cx@) = Colayw). . .Onla), (A1)

or, when all the @; are equal to a, and all the #’s have
the same distribution,

Cx(u) = [Colaw)] . (A-14)

Now while the moments of a distribution are a set
of parameters which are useful for measuring its
properties, and for specifying it, they are not, however,
the only set of parameters for this purpose, or even the
best set. Another series of parameters, the so-called
cumulants, have properties which are more useful
from the theoretical standpoint.

Formally the cumulants %, are defined by the ex-
pansion of the cumulant generating function (c.g.f.)
K(u)

K(u) = log M(u)

u?

wB
= klzc+k22—!+k3g+... R (A-15)
or alternatively,
K (tu) = log C(u)
‘)2
= kl(z'u)+k2%u—,) +.o.. (A-16)

Note that it is sometimes more convenient to write
the same equations as

M(u) = oxp [K(u)]

C(u) = exp[K(in)].

or

(A'17)

The relations between cumulants and moments may
be found by equating coefficients of powers of u in
the expansions

2
kbiutky—+ks—+... = log(1+m1u+mz%+...) R

(A-18)
and the results are widely tabulated.
In terms of moments about the mean m,, the
cumulants k; are
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k, = m; = mean,

k, = m, = variance ,
ky =mg,

ky = my—3m3 ,

ky = mg—10mymy . (A-19)

The coefficients of skewness and excess, which are
measures of the departure of a distribution from the
normal, are kg/k3® and k,/k3 respectively.

The important property of cumulants for our pur-
pose is that, in taking the sum of a set of random
variables, the cumulants of the individual variables
are additive. This introduces a great simplification in
the mathematical manipulations. For it follows from
(A-7) that

Ex(u) = log Cx(u)
= log C,, (u)+log C,,(u)
= K, (u)+K,(w), (A-20)
and hence the coefficients in the expansion of the right-
hand side of this equation are also additive.
We can obtain the characteristic function for the

distribution of the sum X of { identical random
variables (A-9) by using (A-17),

Cx(u) = exp [Kz(iu)] = exp [tK,(iu)], (A-21)
where K,(u) is the c.g.f. of a single random variable.
When the random variables are not identical, we shall
have instead

-

Cxtu) = exp| 2 Kofu) (A-22)

Ik
APPENDIX B

Generating functions and cumulants of
multivariate distributions

We shall illustrate the definitions required for the joint
probability distribution of anumberof random variables
by the bivariate case. The extension to more than two
random variables is obvious. If f(z,y) is the joint
probability distribution of the random variables x
and y, the mixed moments are defined by

m,s=S S yf (@, y)dady . (B-1)
—00 ¥—00

Note that the first suffix in m,; always refers to the
first random variable considered, x, and the second
to y. This conventional notation will be followed for
mixed cumulants as well.

In the various generating functions, it is now neces-
sary to introduce a carrying variable u; for each ran-
dom variable. Thus, for instance, the characteristic
function is now

C(uy, uy) = & exp [i(uz+uyy)]

-7 explitmecunfe, nazay 32)



= 14+ 2(myguy +mg; Uy)
y2

i
+ 31 (90 Us +2myy Uy Uy + M5 u3)
73 5
+§(m30u1+...)+.... (B-3)

The c.g.f. will be related to the m.g.f. by the equations:

K (uy, ug) = log M (uy, uy) (B-4)
or
exp [K (uy, uz)] = M(uy, u,) , (B-5)

and the mixed cumulants to the mixed moments by

klO kOl k20 a kll 02 2
1ot “torii“ oot T %t grar
k‘rs 7,5
+'..+/’T3!ulu2+'.-

_ log(l—}— i LI

1’0' ) m01u+m20 2_‘_._.)_ (BG)

0112 arg1™

Instead of expanding the right-hand side of (B-6),
the relation between cumulants and moments can
most easily be derived by a process due to Kendall
(1943), which considerably simplifies the labour. This
method has been used by Cook (1951) to derive rela-
tions for the bivariate case, and we reproduce some
of her results that we shall need here. When the origin
is at the mean (k;y = ky = 0):

Order

2 kyg = my,
11 = My

3 kg = my,

kyy = myy

2

4 kg = my—3myg
kg = mgy —3mogmy, .
Koy = Mgy —mygmo, —2mi

5 kgy = mgo—L0myemy

kyy = myy —dmggmyy —6my ma,

kg = Mgy —mggmos —6myymy; —3myamyg . (B-7)
The relations are symmetrical in the suffixes, and are
the generalizations of relations (A+19), from which they
are in fact derived. In the application to statistical
problems in crystallography, many of the moments on
the right-hand side are zero (e.g. for a random distri-
bution of atoms mg, = 0, and for space group Pl
my, = 0).

A search of the statistical literature has not revealed
any tables of relations for the trivariate case, but it is
easy to derive those we need from (B-7) by using
Kendall’'s (1943) method. The results not already
contained in (B-7) (one can add as many zero suffixes
as required to any of the relations) are:
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3 kyy=my
4 oy = Mgy —MaggMyy — 214300,
5 kyyy = Mgy —3mgigmy g1 —MygeMgy;
— 31111 Meggp— 3Ma01Ma1g
ko1 = Mgy —MiggMggy —4myy My g
= 2541 01— 2Mg1 oMy —MgpgMagy - (B-8)

These relations can be checked by seeing whether
they reduce to (B-7) or (A-19) on amalgamating suf-
fixes. We have written out the relations in full for,
although many of the moments will vanish when the
atoms are assumed to roam uniformly through the
unit cell, they will not necessarily do so for other
distributions that one might use (e.g. when restrictions
are placed on the atomic positions, or the atomic
positions are assumed to be correlated in some way).

APPENDIX C

Case of unequal atoms

The point of departure for deriving the joint prob-
ability distribution of a set of structure factors when
the atoms in the cell are not all equal, but have the
same probability distribution, is equation (2:3) of the
text.

V%(uls seny u"'l)

=M (iU, « ooy @rUm). o M (@ethy, ...y @ettm). (C-1)

Introducing the multivariate cumulant generating
functions, as in (2:7),
A =log A ,

K =log M, (C-2)

where K(uy, ..., um) is given by equation (2:8); it
then follows from (C-1) that
t
x(”’l’ L) uTTL) = .Z;K(qul, L) (Pjum) ‘ (0'3)
j=
Here
K(@suy,. .., prum)

2,2 2,2 3,3
_ kaoo... 95 u1 Kozo...pjUs | Kseo... 05 %3

S 21010! ... "0l210!... "3l0t10!.
= ¢% (terms in p+q+r... = 2)+...
+¢f (terms in p-+g+7... =v)+....
Hence
H (Uyy v e vy Um)
t
= <Z qﬁ) (terms in p+g+7... = 2)+...
j=1

¢
+ <2 ¢7> (terms in p+g-+7... =»)+.... (C4)
j=1

Since the atoms are unequal it is not possible to re-
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write this expression directly in terms of standardized
cumulants, as in equation (2-12). The second-order
term does, however, simplify to

2 2
ui+duz+...,

since
ksgp... = Mago... = <§2> =n
and
i
nZ@;=1.
j=1

To deal with the higher terms we introduce the nota-
tion

t
G=29- (C4)
j=1

The moment-generating function is then

M (Uyy 0oy Um) = XD [ (U, « -+ y Um)]

= exp [$(Wi+ud+...)+ T LL], (C6)
y=3
where (cf. (2-15))

k
L= S — BT gPudul.. .,

’ (C5)
P+q+...=,,p! glrl ...

the sum § being taken over all partitions of ». Note
that the £’s in this expression are unstandardized
cumulants and that

L, = w4, . (C-6)

Proceeding now exactly as in § 2, we obtain

exp [—3(i+uf+ .. A (uy, . ., Um)

=1

+&aL,

+ oLy +3E5L5

+55L5+43C4L3L4+%C§L§

+en, (C7)

where we have kept the same ordering of terms as
in (2-16).

The inversion of (C-7) follows just as described in
the text in § 2. We obtain

1
vy Bm) = s exp [—3(Ei+E;+. ..+ EE)]

P(E,, .. I

k300...

* {1+C3[3! oror . HalBy)+...

L N R AT

211100... 2
k
+FIHT11_!H1(E1)H1(E’2)H1(E3)+__.J .
k
| gromer— HalB)+..
k
tarrror - HaB)Hy (B + .. ]
+etc.}_ 9
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APPENDIX D

Calculation of mixed moments and cumulants

Some of the required results are already tabulated in
Hauptman & Xarle’s monograph (1953). A good
general method is that due to Bertaut (1955a, b), in
which the trigonometric structure factor is expressed
as the linear sum over the equivalent points of the
space group. For P1, one writes
£(h) = 2 cos 2zh.r = S(h)+8-th), (D-1)
where
S(h) = exp (2mh.r1). (D-2)
(i) Then to calculate, say, m,, for the pair of struc-
ture factors Ko = Eyp, and By = Ky, (§ 3) one writes

En,&hy = (Sny+Shy) (Shy+Sh;)°
= (Sh,+S5n;) (Shy+4Sh, +6+4Sh2+Shy)
= 48y, 85, + 4S5  Spe+ .+«
=4+4+..., (D-3)
since
S, Shs = SuyShz = 1
because
h,+2h, = 0. (D-4)
Then
myy = (&p,bpy = 4+4 =8, (D-5)

since the averages of the other terms in (D-3) are zero
when the atoms are uniformly distributed throughout
the cell.

In a similar way we find that the only non-vanishing
moments are

Mgy = Mgq = 2, Myy = 2, Myy = Myy = 6,
Mgy = 4, Mgy = 6, my, = 8.

(D-6)
From these we obtain the cumulants &,, by (B-7):

kg = kyg = 2, kyg = 2, kyg = Koy = —6,

ko = 0, kyy = —6, kyy = —16. (D7)

Finally the standardized cumulants 1,, are obtained

by dividing the latter by (J/kge)?™? = 2@ T02:

Aop = Agg =1, Ay = 1/?}’ Aoa = Ago = —3/2,
Ao = 0, Ay = _3/23/2: 214 = —8/23/2 .

We have written the 4,, in terms of powers of 1/2%
so that the latter may be easily incorporated into the
powers of 1/t¥ that occur in the expression (3:3) to
give terms in 1/N%.

(D-8)

(ii) In § 4 we shall require the mixed moments and
cumulants for the evaluation of P(Hy, By, Ep,p)
for P1. The moments

Mpgr = <§(h1)17§(h2)q§(h3)f> ’ (D.g)
subject to the condition
h;+h,+hy; =0, (D-10)
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are found as in the example (D-3)-(D-5) above.
The cumulants %, are then found by using (B:8)
above, and are finally standardized by dividing by
2(r+¢+1/2 . The results (which are, of course, sym-
metrical in h;, h, and h,;) for the non-vanishing
moments are:

pgr 200 111 400 220 113
My 2 2 6 4 6
o engs 2 2 -6 0 -6
7 Dgr 1 /2t —3/2 0 3/2%
(D-11)
APPENDIX E

Calculation of the characteristics of a conditional
probability distribution

(a) Bivariate distribution
The method we shall use is due to Wicksell (1917),

in which the moments of the distribution (3-13) are
evaluated in the form (3:17). We require to calculate

s e sai_i_j(p(x’ y) .
Iij = S_mx axzaxq— X , (E l)
where
1
@, y) = p@)ply) = 9, &XP (—32°—3y%) . (E-2)

It is easy to show by integration by parts of (E-1)
that
s! dIg?

]y — ) <
- ( i)l dy when 7 <s,
0 , when ¢>s.
(E-3)
Furthermore,
[o.0)
L= o)\ 'y
—00
1.3.5...2m—1)e(y), when s=2m,
B 0 , when s=2m+1.
(E-4)

From (E-3) and (E-4) we obtain, by using (1-16) and
(1-17),

{13(1:?’(?/), I =0,

If, = (-1YH;(y)p(y) , B, = 3(-1V"H;(y)p(y) ,
Iy = (1) H ), D= ST @)
I = (-1VHi@y)e),

I?i =0 ’
Iy = 2(=1VH;(»)p(y), (E-5)

Hence every term in the numerator and denominator
of (3-17) contains the factor ¢(y), which thus cancels
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out completely, leaving simple expressions involving
products of Sy and Hermite polynomials H;. As an
example we shall write down the expression for the
mean {Hop)p,. From (3-17),

T30+ BosTas+Pielis+oaloat Bralis+ - - -
I3+ Bos s+ Boaltst - - -

where we identify E,, (= E,) with 2 and By, (= E,)

with y. Substituting from (E-5) into (E-6), and in-

cluding only those f; that do not vanish in the ex-

pression (3-4) for P(X,, E,), we have

_ﬁmHz(EZ)—1314H4 (E2) —ﬁIGH E
1+BoHy(E,)

{2y = (E-6)

<E1>E2 =

The values of fi are obtained by comparing (3-4)
with (3:14), and we finally obtain

1 1
s HalFa)— 3y BHL B+ Ho ()]
<E1>E2 = 1
I_WH4(E2) (E-7) ’

(b) Trivariate distribution

When three random variables z, y, z are involved,
as in § 4 where they are By, By and Ey_ .y respec-
tively, the probability distribution is of the form
(see (4-5))

F(x, y, 2)
otk
= (p(x’ Y, 2)+i+j.§23ﬁtjkm¢(x’ Y, Z)
= 9y D)1+ I (=1l (@) Hy(y) He ()]
i+j+k >3
(E-8)
where
P, ¥, 2) = p@)p¥)@(2)
= 2n) exp [~} (22 +y2+2%)] . (E9)

(i) The sth moment of x as a function of ¥ and z
will then be given by

1000+ 2 ,Bukllﬂc

+(@)y, 2 AALEL , E‘10
# wE I(())O + 2 ,Bz]LIz]k ( )
where e
o0 ai+i+k(p(x Y z)
Ii = s__ rYo . .
ijk S_wx i By dx (E-11)

Comparing (E-1) and (E-11), and using equation (F-2),
it is obvious that

1?7'k= (— )Hk(z) i 2

where the [j; are given in (E-5).

The B are obtained by comparing (E-8) with the
particular probability distribution to be considered,
namely (4-5):

(E-12)
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Pr = —I/Né: Baoo = —1/8N, Popz =1/2N , (E-13)
_ _ 3/2

Pz = 1/2N3/2, Bus = I/BNSIZ’ Bsss = —1/6N°E,

The calculation of the mean (x), , is then straight-

forward. To obtain the variance, the second moment

Us(@)y, . is first calculated from (E:10), and then

equatlon (3-8) is used. The final results are given in

equations (4-12) and (4:13).

(ii) Further quantities required for the case of the
trivariate distribution (see § 4-4) are the moments of
the product zy as a function of z. We shall denote
the mean and second moment by {xy), and {x2y?),
respectively.

Quite generally, the product moment {x%y'y, of the
trivariate distribution (E-8) is given by

Ifn+ 2 Pulis

+i+k >3

E-14
=YD = TIN A+ X ﬂz,LIf,“k ’ ( )
where HrrEzs
co 6i+j+k<p(x Y, 2)
St i .
I = S_ z°y ooy o dedy. (E-15)

It is easy to show just as for the bivariate case that

. sle! d*
-1 i+ T 7, 0—j
P R e T
k= when i<s,j<t,
0, when 2>s or j>1t,
and that (E-16)
1.3.5...2m—1). 1.3.5...2n—1)p(2),
@
Ig, = when s = 2m, t =2n,
0, when s =2m-+1 or t=2n+1.

(E-17)

From (E-16) and (E-17) we find, omitting the common
Jactor @(z),

IN, = (—1}H,z), (I%=0,
7 = 0 I3, = 9(—1)*H,(2) ,
{ = C1Ee, (B0
[ . H" I8, = 36(=1)*H,(2) ,
T = GG g = 18-11 ).
Illlc =0 B
Ié%k = (—l)ka(z) » (E-lS)

APPENDIX F

The Hermite polynomials

The Hermite polynomials H,(z) are defined by the
equation

H,@) = (-1 exp (1] = oxp [~ }2¥]  (F1)

JOINT PROBABILITY DISTRIBUTIONS OF STRUCTURE FACTORS

or

¢¥ (@) = (-1)H (@)p(x) , (F-2)
where
@(z) = (@2m)t exp (-2%2) . (F-3)
The lowest-order polynomials are
Hyx) =1, H,(z) = 22 —62%2+3 ,
Hiz)==, H(z) = 251023+ 15z ,
Hy(zx) = 2?1, Hg(x) = 28—152%+45x2—15.
Hy(z) = 23-3x, -

We take the following table of values from Wicksell
(1917):

& Hy(x) Hy(w) Hy(2) Hg(x) Hg(z)
0-0 -—1-000 0-000 +3-000 0:000 —15-000
0-5 —0:750 —1-375 +1-563 +6-281 —4-672
1-0 —0-000 —2-000 —2-000 =+ 6-000 ~+16-000
15 +1:250 —1-125 —5-438 —3-656 +21-703
2:0 -+ 3-000 +2-000 - 5-000 —18-000 —11-000
2.5 + 5250 +8-125 +4-563 —21-094 —75-547
3-0 +8:000 418000 +30-000 +4-18-000 —96-000
35 +11-250 +82-375 479563 +148-969 +123-578
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Matrix-Theoretical Derivation of Inequalities

By Inao TacucHI aAND SHIGEO NAYA

Faculty of Science, Osaka University, Osaka, Japan

(Recetved 10 January 1958)

Using the matrix theory, a general type of inequalities for P1 and P1 is derived. The results ob-
tained for P1 are the same as those derived by Karle & Hauptman.

1. Introduction

Since Harker & Kasper (1948) derived inequalities
among the structure factors, the same problem has
been examined by many authors. Based upon the fact
that the electron densities are non-negative, Karle &
Hauptman (1950) derived some general limitations to
be imposed upon the relations among the structure
factors. Using their method, Bouman (1956) derived
a complete set of fundamental inequalities for the
structure factors possessing a centre of symmetry.
The present paper will show that the same relations can
be derived in a more compact form by means of the
mafrix representation of the Fourier transformation
between the structure factors and electron densities.

2. Representation in matrix form

For the sake of simplicity we shall treat the one-
dimensional case, though the method can be ex-
tended to the cases of more than one dimension with-
out encountering any great difficulty. The electron
density g(x) in the unit of the length L isrepresented by

] oo
e(x) =T =

h=—00

F,exp[2nthx], h=0, +1, +£2, ...;
—i<z<i. (1)

Let us divide our unit cell into (2 +1) equal ranges,
A = L|{(2N+1). Then the following formula ap-

proaches to equation (1) asymptotically with increase
of the number of division:

Z Fy, exp [2amh

r 1
e <2N+1> T eN 4,y ON+ 1]

hyr=—-N,...,0,..,N. (2
Defining
;
(2) is replaced by
! z F [2 i b
o oNT1,=y P Mo 1]
hr=—N,...,0,...,N. (3

The Fourier series (3) can now be represented in terms
of a (2N +1)-dimensional matrix product as follows:

e = UFU-, 4)
where

e- o (5)

L Ov 1,



