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A me thod  is derived for calculating the  joint  probabil i ty  distr ibut ion of any  desired set of structure 
factors. The expressions are obtained in the  form of a strictly asymptot ic  series in powers of N-½ 
in the  case of N equal a toms in the  uni t  cell, and in terms of related quant i t ies  in the  more general 
case. The results are thus more accurate than  those of H a u p t m a n  & Karle, Cochran & Woolfson 
and Bertaut ,  and are cast in such a way tha t  it is easy to make  a connexion between the  statistical 
approach to the  phase problem and the  under lying physical  basis of the  sign relations tha t  have 
been used. In  particular, the  dependence of the  reliabili ty of the  la t ter  on the  number  of a toms in 
the  uni t  cell is brought  out directly. 

The general mathemat ica l  theory  is given in §§ 1 and 2. In  § 1 the  probabil i ty  distr ibut ion of a 
structure factor is calculated by  using a relatively simple and powerful me thod  for expressing the  
probabil i ty  distr ibut ion of a sum of random variables in terms of the cumulants  of the  distr ibution 
of one variable. In  § 2 this me thod  has been extended to develop formulae for the  mul t ivar ia te  
case, and a symbolism is derived for wri t ing down the distr ibut ion of a set of structure factors to 
the  desired degree of approximation.  

In  § 3 the  me thod  is used to make  a detai led s tudy of the  sign relation between E2h and IEhl 
in space group P1,  since this is the prototype of all relations in which signs are de termined from 
intensities. This example is also used to illustrate a general me thod  for determining the  mean  and 
higher moment s  of a structure factor as a function of the values of other related structure factors. 

§ 4 is devoted  to a thorough s tudy of the  sign relationship S(h) ~ S ( h ' ) S ( h + h ' )  and to Sayre's 
equation.  In  the course of the  work a new inequal i ty  relat ing U(h),  U(h ')  and U ( h + h ' )  was 
developed. This gives an expression for the  bounding contour of the  probabil i ty  distr ibution of 
the  three structure factors, and the  lat ter  is seen to pass smoothly  to the  l imit ing case of the  in- 
equality.  I t  is pointed  out tha t  this connexion between a probabil i ty distr ibut ion and an inequal i ty  
(or equali ty)  can always be made  for any chosen set of structure factors. 

In  § 5 the considerations of the earlier sections are applied to give a critical assessment of the  
value of various relations or formulae tha t  have been proposed for sign determinat ion.  The idea 
of an order of a sign relation is introduced and related to the  variance of the  est imate of a sign. 
The advantages claimed for using a formula having strict, ra ther  than  merely statistical, val id i ty  
are disputed and i l lustrated by a s tudy of the  relation between S ( 2 h + h ' )  and the values of [Eh[ 
and  Eh,. A new and more realistic formula is proposed which includes the dependence of S ( 2 h + h ' )  
on the known value of lE~.hl. Finally,  it  is concluded tha t  there is as yet  no routine solution of the  
phase problem, and tha t  the  high-order formulae are not  useful for anyth ing  but the simplest 
structures. 

Notation t 
W h e r e  possible the  n o t a t i o n  of H a u p t m a n  & Kar l e  $~ = • q~. 

(1953) and  Cochran & Woolfson  (1955) has  been  used. j=l 
Note particularly that: z~ = 

X---h h is the average of X over a range of values of h. my = 
(X~ is t he  expec ted  va lue  of X. kv _- 
<X>r is t he  expec t ed  value  of X,  w h e n  Y is he ld  con- X~ = 

s tan t .  M = 
~(h) is t he  con t r ibu t ion  of an a t o m  to  the  geomet r ica l  C = 

s t ruc tu re  factor.  K = 
N = n u m b e r  of a toms  in the  un i t  cell = nt. .11£ = 
t = n u m b e r  of i n d e p e n d e n t  a toms  in the  cell. ~ = 
n = s y m m e t r y  number .  5/C __ 

f j /  ~ ~j [ / ~  f~ (Ber taut ,  1955a, c). d° = S(h) 

ev (Cochran & Woolfson,  1955). n~v = 2: ~ = e.~/--~ 
j = l  

is t he  vth order  m o m e n t  of ~. 
is t he  vth  order  c u m u l a n t  of ~. 
k~/n ~/~ = s t anda rd i zed  cumulan t .  
m o m e n t  gene ra t ing  func t ion  (m.g.f.). 
character is t ic  func t ion  (c.f.). 
c u m u l a n t  gene ra t ing  func t ion  (c.g.f.). 
m.g.f. / 
c.f. of a set  of s t ruc tu re  factors.  
c.g.f. 
is t he  m a t h e m a t i c a l  expec t a t i on  operator .  
or S(Eh) is t he  sign of Eh. 

36* 
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In t roduc t ion  

I t  is now some years since the appearance of the mono- 
graph of H a u p t m a n  & Karle  (1953), who a t tempted  to 
develop a routine procedure, which did not require 
previous knowledge of any  signs, for determ_ining signs 
of structure factors in the space group P1 and other 
centrosymmetr ic  space groups. That  this procedure 
could lead to a routine solution of the phase problem 
for crystals of more than  moderate complexi ty was, 
however, severely disputed by several authors (for 
references see Cochran & Wool/son (1955)). The 
importance of H a u p t m a n  & Karle 's  work lies in the 
introduct ion of the idea of a joint  probabi l i ty  distribu- 
t ion of structure factors which enables one to calculate 
the probabi l i ty  tha t  a certain structure factor (or set 
of structure factors) has a certain sign when certain 
other related structure factors have their  observed 
values. Some relations involve only the magni tudes  of 
the la t ter  related structure factors, while others 
require tha t  the signs be known as well. The lat ter  are 
usual ly  known as sign relations. We m a y  call the first 
category sign determining relations. 

The distr ibut ion functions tha t  have been obtained 
by  H a u p t m a n  & Karle,  and others, no tab ly  Cochran 
& Wool/son (1955), are not in closed form, and it is 
not  at all clear what  degree of approximat ion  is in- 
volved in the results. The stat is t ical  problem in crys- 
ta l lography is, however, quite clearly one involving 
linear sums (structure factors) of random variables 
(the atomic contributions to a structure factor), and 
there are more or less s tandard  methods in the theory 
of probabi l i ty  for dealing with problems of this kind. 
In  this paper  we shall  use (and extend) these methods 
to set up accurate expressions (to any  desired degree 
of approximation)  for the joint  probabi l i ty  distribu- 
tion of any  selected set of structure factors. We shall 
then apply  these results to calculate in detail prob- 
abi l i ty  distr ibutions in two dist inct  examples, one 
involving the est imation of a sign from intensities 
( P ( U 2 h ,  Uh)) ,  and the other the est imation of signs 
from other signs (P(Uh, Uw, Uh+w)). 

F ina l ly  we shall discuss the bearing of this work on 
the solution of the phase problem. 

1. Linear  s u m  of r a n d o m  v a r i a b l e s  and the  p r o b -  
a b i l i t y  d i s t r i b u t i o n  of a s i ng l e  s t r u c t u r e  fac tor  

The concepts and methods of probabi l i ty  theory which 

we shall  use are summarized in Appendix A. 
In  this section we shall  use these methods to re- 

derive the results of H a u p t m a n  & Karle  (1953, p. 8, 
equation (1-29)) and of Ber taut  (1955c, equation 
(II-1)) for the probabi l i ty  distr ibut ion of a single 
structure factor. This will serve as a preparat ion for 
the more complicated case of distr ibutions involving 
more than  one structure factor. I t  should be stated, 
however, tha t  there is also nothing essentially new in 
the method or the results. We shall only sketch the 
derivation since what  is involved is the well-known 

theory of the Gram-Charlier and Edgeworth series, and 
a very good account is given in Cramdr's book (1946). 

Let us assume tha t  we have a sum E of t r a n d o m  
variables ~ each of weight ~ "  

E ~-- ~91~1~- (P2~2  t ~ - . . . - - ~ c f t ~ t  • (1.1) 

The connexion with the crystallographic case is 
obvious, for, in the usual notation, a normalized struc- 
ture factor is given by 

t 
E(h)  = .~ 9 9 ~ ( h ) ,  (1-2) 

i=1 

where ?~ is the normalized scattering factor introduced 
by Ber taut  (1955a, c) 

(we shall in what follows ignore the dependence of 9~ 
and f on h). ~:(h) is the trigonometric factor for the 
space group involved and t is the number of inde- 
pendent atoms in the unit cell. The total number of 
atoms in the cell is N = nt, where n is the symmetry 
number .  For space group P1, n = 2, 

~(h) = 2 cos 2 z b . r  (1-4) 

and N = 2t. 
I t  also follows tha t  

t .N .n :V 
- -  9 - 6  9 

E 2 = Z q 7 ~  7 = Z n ~  = ~ q 7  = 1.  (1.5) 
]= l  j= l  j= l  

When nothing is known a prior i  about the distribu- 
tion of atoms in a uni t  cell, the position vector r m a y  
be assumed to be a random variable and hence ~(h) 
will also be a random variable. Note that ,  in what  
follows, the dis t r ibut ion of r and of ~:(h) is not ex- 
plici t ly introduced, and in fact the general theory 
holds for any  distr ibution one might  consider. In  
practice, when one comes to calculate a result, it is 
simplest  to assume tha t  the atoms are dis t r ibuted 
uniformly* over the unit  cell. 

While the analysis can be carried out quite gener- 
ally, it is instructive for the moment  to assume tha t  
all the atoms are equal and have the same distribu- 
tion. Then equation (1) becomes 

t 

E = ~v.S ~,,  (1.6) 
1 

where 
= 2g-½ = (nt) -½.  (1-6a) 

All the components ~i have the same distribution, 
with mean  zero and s tandard  deviat ion (q given by  

al  = ~2 = n, the symmet ry  number.  (1.6b) 

The sum E has a zero mean and a s tandard  deviat ion 

* The effect  of imposing s t ronger  restr ict ions on the  possible 
positions of a toms  or pairs of a toms  will be considered else- 
where.  
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of unity. If C~(u) is the characteristic function of the 
single random variable 2, and C(u) is the c.f. of the 
sum E, then, from equation (A.14), 

C ( u )  = [C~(~u)]', 

which, using (A.21), becomes 

C(u) = exp [tK~(iq)u)], (1.7) 

where K~(u) is the c.g.f, of the single random variable 
2. That  is, 

CO ( / U )  Y 

K~(iu) = ~Y, k, (1.8) 
= ~ !  ' 

where the k, are the cumulants of the distribution of 2. 
So, combining (7) and (8), 

c o  " r 

C(u) = exp/t2."  k~--TT--| 
L~=I ~ .  ] 

= exp t n"leu------~ ~. \ t½ ] 1 '  (1.9) 

from (1.6a). 
At  this stage it is clearly convenient to transform 

the distribution of 2 to standard measure by dividing 
the cumulants k, by a~ = (~/n) ~, tha t  is, we intro- 
duce the standardized cumulants 

~. = k . l ~ i  = k J n  ~/~ . (1.10) 
(Note tha t  the distribution of E is already in standard 
measure; had we initially worked with F(h)  rather  
than E(h)  we should have had to transform to the 
lat ter  at this point.) 

Hence we may ~Tite equation (9) as 

:Now 21 = 0 and 22 = 1, and taking the term in ~ = 2 
to the left-hand side, we write the last equation as 

exp (-~)C(u)= exp [ t / a  ~ \ t~]J  (1.12) 

To derive the Gram-Charlier series, the right hand 
side is now expanded in powers of u, giving (see 
Cram6r, 1946, § 17.6) 

exp C ( u ) = l + A a ~ +  4 ~ + . . . ,  (1.13) 

or  

C(u) = exp - +-~-.v (iu)3 exp - + . . .  , (1.14) 

where 
t~2 352324 

A 3 = ,~ ,3 / t l / 2  , A 7 = + t---~/- V -  , 

28 1 (terms in 232~) 
A4 = 24/t' As = t f f  + ~  \and 2] . ' 

29 2802] 
A 5  = ) ' d F 2 '  A 9  = - i~  + ---i37 ~-  + . . . .  

26 102] 
A ~ = ~ +  ~ , (1.15) 

To obtain the probabili ty distribution of E, P(E) ,  
tha t  we seek, we now take the Fourier transform of 
equation (14). The transform of each term is obtained 
by using the result 

F 1 (iu) v exp [ -½u 2] exp [ - i u x ] d u  
2~ _o0 

= (-1)v~(")(x)= H~(x)cf(x), (1.16) 

where ~(~)(x) is the vth derivative of the standardized 
Gaussian function 

~(x) = (2~)-½ exp (-½-x 9) (1.17)* 

and H~(x) is the Hermite polynomial of the vth order, 
defined by the second member of equation (16). 
Some of the H~(x) are given and tabulated in Appen- 
dix F. 

So, finally, we have 

A a  A 4 
P(E)  = q ~ ( E ) - ~ .  ~(a)(E) + ~ ~O)(E)+ . . . .  

[ A~ A4 ] 
=~(E)  I + N H ~ ( E ) + T ! - H 4 ( E ) + . . .  , (1.18) 

where the A / s  are given by equation (15). 
This result is perfectly general. To arrive at the 

results of Hauptman & Karle (1953, p. 8) for the space 
group P1-, all one has to do is to substitute from (15) 
for the A,'s in terms of the eumulants, and then for 
the latter in terms of the moments of the probability 
distribution of 2 (see (A.19)). As stressed above, it 
is only at this stage in the derivation tha t  the nature 
of the assumed probabili ty distribution enters into 
the theory. 

From equations (15) and (18), we see tha t  the cor- 
rection terms to the simple Gaussian distribution for 
E depend on powers of I/t½, where t is the number of 
random variables contributing to E, or, in the crystal- 
lographic ease, on powers of I/N½ where _IV is the 
number of atoms in the unit cell. Since in practice 
it is necessary to take only a finite number of terms in 
the series, we require tha t  the terms tend regularly to 
zero so tha t  a term is negligible compared with the 
preceding one, i.e. tha t  we have a true asymptotic 
series. This is not, however, the ease for the above 
series since terms in 1/.N, for instance, occur in A 6 
as well as in A 4. Furthermore,  we see from (15) tha t  
contributions up to order I/N½ contain no cumulants 
of order > 3, those up to order 1/N no cumulants of 
order > 4, and so on. Indeed it is easy to show tha t  
if we wish to consider only cumulants (and moments) 
up to order v we need not take into account any terms 
of power greater than 1/N½ v-1. The form of the Gram- 
Charlier series (18), in which the individual terms A, 
arise as coefficients of powers of the carrying variable 
u, obscures this simple and important  fact. 

* No confusion ought  to arise be tween the  two s t anda rd  
usages of ~ in (1.3) and  in (1.17), since the  two meanings  
never  occur together .  
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I t  was to overcome this objection that  Edgeworth 
devised a series (see Cramdr, 1946, Chap. 7) which 
gives a straightforward expansion in powers of l/N½ 
and which is such that  the calculation of terms up to 
a desired order does not require knowledge of any 
moments that  are not really necessary. We cannot 
here go over this well-known section of random vari- 
able theory; but the point is raised here so that we 
might, in what follows, aim at proper asymptotic 
expansions in which the remainder is of the same order 
as the first term neglected. 

The method given here for calculating the prob- 
ability distribution of a structure factor is a precise 
formulation of the original approach of Hauptman & 
Earle (1953) and of Bertaut's first papers (1955a, b). 
In a later paper Bertaut (1955c, equations (I-16) and 
(II.1)) makes use of a rather dubious expansion of the 
Dirac (~-function to arrive at what is essentially the 
Gram-Charlier series given above. Since he has made 
great use of this method, perhaps it is worth while 
making the following comments on the form of his 
equations. 

When one is dealing with a probability distribution 
f ( x )  that  is approximately Gaussian, it is convenient 
to express it in the form of a series in terms of the 
normal error function and its derivatives, thus: 

C3 C4 
f ( x )  = q~(x)+ ~ c f ( a ) ( x ) + ~ f ( ~ ) ( x ) + . . .  , (1.19) 

which, by (16), becomes 

/ (z l  = ~(xl I + N H ~ ( x I + ~ .  H~(xI+. . .  , (~.201 

where 

A,, = ( -  1)'cv = H~(x ) f ( x )dx  (1.21) 
- - C O  

because of the orthogonal property of the Hermite 
polynomials. Using angular brackets to denote aver- 
ages, we may write 

Av = (Hv(x )~ ,  (1 21a) 

and then (20) becomes 

I f (x )  = q~(x) 1 + 2 (H , ( x ) }  H,,(x ,=a ~! , (1-22) 

which is exactly the expression that  Bertaut's ex- 
pansion of the ~-function was designed to give. While 
formally correct, we have seen that, for the problems 
we are dealing with, x is itself a sum of random vari- 
ables, and the form of equation (22) hides all reference 
to the orders of the terms of the series, as shown 
above for (18). It  should, however, be mentioned that 
in his first approach, subsequently abandoned, Bertaut 
(1955a, equation (III.41)) gives the dependence of 
the terms on powers of 1/N½. 

Finally we may note, for completeness, that curves 

of P ( E )  (equation (18)) have been calculated and 
plotted by Slack (1946) in another context. 

2. Joint probability distribution of structure 
factors: general express ion 

Consider a set of m normalized structure factors E(hi), 
which, when there is no ambiguity, we shall write 
freely as Ei (here again as in § 1 it is convenient to 
normalize from the outset): 

E(hl) = q~l$1(hl) +q%~2(hl) + . . .  +q~t~t(hl) , 
E(h2) = qh~l(h2) + . . . . . . . . . . . .  +~t~t(h2), (2.1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

E(hm) = ( ] ) i~ l (hm)~-  . . . . . . . . . . . .  ~-q~t~t(hm) • 

The definitions and notation we shall use for a multi- 
variate probability distribution are given in Appen- 
dix B 

We wish to develop an expression for the joint 
probability distribution of the E(hi), analogous to 
equations (1.18) and (1.15) for a single structure 
factor Mathematically, we have to derive the Gram- 
Charlier, or rather Edgeworth, series for a multi- 
variate distribution A search through the statistical 
literature failed to reveal the formal expressions, but 
it is fairly easy to generalize the method of § 1 and 
Appendix A to derive them That is, the characteristic 
function of the multivariate distribution is first eval- 
uated, and then the probability distribution is found 
by taking the Fourier transform For brevity, however, 
we work with the entirely equivalent moment- 
generating function to save ~Titing complex i's, and, 
as udll be seen, the mathematical operations become 
largely symbolic ones, very easy to manipulate 

For each E(hi) we introduce a carrying variable ui 
(note that it is the E's that  are from this point of view 
the random variables, not simply the }'s as might at 
first have been thought). Then the m gf.  of the E's 
is, from (2-1), 

d / ( u l ,  ue, . . . u , , )  ~ # exp [ u , E ( h , ) + . . .  +u, ,E(hm)]  

-t-U 2 {991~1(h2) ~ - . . .  + ~ t ~ t ( h 2 )  } 

+ ~ { ~ ( h ~ ) +  +~,~,(h.,)}], 
which we rearrange as 

- -  (#  exp [ U l ~ l ~ l ( h l ) + U 2 ~ l ~ l ( h 2 ) + . . .  +Um~)l~l(hm)]) 
x (#  exp [ul~e}2(hl)+u2~2(h2) + . . .  +um~2~:~(hm)]) 
~ . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

x (5 ~ exp [ul~t}t (hl)+Ue~t}t (he)+ . . .  +umcft}t  (h~)]) 

- - M l ( ~ l U  1, 001u2 . . . .  , c],)lUm)M2(cf2Ul, 0P2u2, . . . ,  (~2um) 

× . . . . . . . . . . . . . . . . . . .  × M t  (q~tul, of rue . . . .  , of tUrn), 
(2"2) 

where Mi(cf~ul, c f~u~ , . . . ,  cf~um) is the m gf.  of the 
• joint probability distribution of the contributions of 
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the i th  atom to the structure factors Ea, . . . ,  E~. If  all 
the  atoms are assumed to be dis t r ibuted independent ly  
through the uni t  cell in the same way, then all the ~ 
have the same distr ibut ion and we can drop the suffix 
i. Then we have  

~ ( u ~ ,  . . . ,  u ~ )  

= .M(cf~u~ . . . .  , q~ lUm) . . .M(c f tu l ,  . . . ,  Of rUm) . (2"3) 

We shall  in this section confine ourselves to the case 
where all the atoms have the same scattering factor, 
i.e. ~1 . . . . .  ~t = % and shall  f ind that ,  just  as in 
the univar ia te  case, the coefficients in the series f inal ly 
obtained will be powers of l/N½. The case of unequal  
atoms is t reated in Appendix  C. 

For equal  atoms, (2.3) becomes 

J~f (u~ . . . .  , urn) = [M(q~u I . . . .  , ~Um)] t, (2"4) 

where K ( u l ,  . . . ,  Urn) 

]~200 . . . 

= 2!  0!  0!  u ] +  
]~020 

0! : . . .  u i +  . . -  

where M (u~, . . . ,  urn) 

m 0 2 0 . . .  m20o.., u ~ +  u ~ + . .  
= 1 + 2 ! 0 ! 0 !  . . .  0 ! 2 ! 0 !  . . .  ' 

mm'"w P q • . uW+. .  (2"5)* 

and the mixed moments  mm~.." are defined as 

mpq~ = ([~(hl)]P[~(h2)]q[~(h3)]~...) (2.6) 

S ~ S ~ [~(h [~(h = . . .  ~)]~ ~) ]q . . .  

× ~f(~(hl), . . . ,  ~=(hm))d~(hl)...d~=(hm), 

where ~f(~(h~). . .~(h~)) is the a priori  probabi l i ty  
tha t  $(h) has the value ~(hl) for h = hi,  the value 
~(he) for h = hz, etc. The simplest  assumption,  which 
has been so far used by almost  all authors on this 
subject,  is tha t  in which the atoms are dis t r ibuted 
u n i f o r m l y  throughout  the cell (i.e. they  m a y  be con- 
sidered to perform a random walk). Then the distribu- 
t ion of $(h) is independent  of h, and the mixed 
moments  m a y  be calculated very easily (Haup tman  
& Karle,  1953; see also Appendix  D). In  this paper  
we shall  make this assumption as well, but  it should 
be noted tha t  the general theory of this section does 
not require a specification of the dis t r ibut ion;  only 
when we come to carry out computat ions do we have 
to insert  values for the mixed moments  mpqr.... 

As indicated earlier, we shall  not  carry out the 
general analysis in terms of moments ,  but  now intro- 
duce the mul t ivar ia te  cumulant  generating functions 
(see Appendix  B) 

~ ( u  a, . . . ,  urn) = log J~'(ua, . . . ,  u r n )  

and 
K(u~,  . . . ,  urn) = log M ( u l ,  . . . ,  urn) , (2"7) 

* W e  a r e  w o r k i n g  h e r e  i n  s t a n d a r d  m e a s u r e  w h e r e  t h e  m e a n s  

m l 0 o  .. ---- k l 0 0 . . .  ---- 0 ,  m o l o . . .  ~ k 0 1 0 . . .  = 0 ,  e t c .  

519 

-{- k p q  . . . w p q 
p !  q! . . .  w!  U ~ U ~ " ' u % +  . . . .  (2.8)* 

In  this expansion there will be as m a n y  terms of 
the uth degree, as there are part i t ions of 

p + q + r +  . . . .  v ,  (2.9) 

and we m a y  refer to the set of corresponding cumulants  
k m r . . . ( p + q + r  . . . .  v) as vth order cumulants.  The 
relations between the cumulants  and moments  are 
given in Appendix  B. 

Then equation (2-4) for the m.g.f, m a y  be wri t ten 

~/£f(ul, . . . ,  urn) = {exp [K(TUl , . . . ,  Turn)]} t 

= exp [ t K ( ~ u l  . . . .  , qmm)] 

= exp [ t Y k m r . . .  ~ p + q + r . . .  

p+q . . . .  2 p!  q! r ! . . .  

p q r I "  
X U 1 U 2 U 3 . , .  (2.10) 

J 
Now, for equal  atoms, 

cf = 1/(nt)½,  (2.11) 

where n is the s y m m e t r y  number  of the space group. 
Fur thermore ,  by  (1.6b) the s tandard  deviat ion of the 
random variable ~ is n½, and hence 

~oo . . .  = ko~o... = ( ~ 9  = n .  

We transform our notat ion to tha t  of s tandard  measure 
(as in § 1) by  introducing the s tandardized cumulants  

2 ~ . . .  = ~ /~p/- o kq/2~o. ~/2 
" ~ p q r . . . / ' ~ 2 0 0  . . . . . . . .  '~002 • • • 

= km, . . . / (~n)P+q+r" ' .  (2-12) 

Then from (2 .11)and (2-12), (2.10)becomes 

JZ(ui, . . . ,  u~) 

=  xp[t 
~+q..--.=2P!q? . . .  \ t½/  \t½] " " ] '  (2.13) 

where 2z00... = 2020... = . . . .  1. 
We now proceed just  as in the univar ia te  case 

considered in § 1. Taking the terms in p + q + r  . . . .  2 
to the lef t-hand side, the last  equation can be wri t ten 
a s  

exp [--{- 2 2 (u~ + u2 + . . .  + 22no . . .u~  u2 + 22~oi...u~ % + . . . )] 

x J/[(u~, . . . ,  u~)  

exp[  
Lp+q . . . .  3P ' .~ .T~=. .  \t½] \t½] \t½] " " ] ' ( 2 " 1 4 )  

To simplify writ ing out the expansion of the right- 
hand  side of this  equation, it is convenient to intro- 
duce the notat ion 
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A, = set of all terms with p + q + r . . .  = v 

S 2pq~... o,po,q~,~ (2"15) ~ 1 ~ 2 ~ 3  . • • , p+q+ . . . . .  pl q! r! . . .  

where the sum S is taken over all partitions of 
p + q + r . . .  = v. The right-hand side of (2.14) is, in 
this notation, 

oo A t " F ~  A " l  

and, on expanding it, we obtain 

1 
1 

+ ~ A 3  

l ( A 4 +  1 -2 
+ 7  N A3) 

+ t3/---i,. 5+ . 2 A 3 A 4 + ~ A ~  (2.16) 

" q -  . . . ° 

In this last expression we have, as foreshadowed in 
§ 1, collected terms according to powers of 1/t½, where 
t is the number of random variables involved (and 
which, we recall, is proportional to A?). The notation 
(2-15) has been chosen to bring out just this similarity 
between the multivariate and univariate cases, and 
(2.16) should be compared with (1.15). 

The inversion of the m.g.f, dZ'(ul, u 2 , . . . ,  u~) to 
give the joint probability distribution of the E's,  
P(E1, E ~ , . . . ,  E,,) now follows just as in § 1. The 
second-order terms are brought back to to the right- 
hand side to give 

~'(ul, u2, . . . ,  u~) 

= exp [½(u~+u~+. . .  +22110u~u~+.. . )]  
1 

x ~1 + 1A3+l- (A~+½A~)+t-~(A~+A~A~+~A3)  
( t~ t 

- ~ C  . • . } ,  

(2.17) 
In the inversion (cf. equation (1.16)) a term 

e x p  [½ ( u 2  + u 2 -}- 2211o . . . u l  u 2  + . . . ) ] upl u q  ura . . . 

will give rise to the term 

H~(E1)Hq(E2)Hr(Es). . .q~o(E~, E2, . . . ,  Era), 

where q~o(E1...Era) is the standardized multivariate 

normal distribution function 

q0 (El, . . . ,  E~) 
1 2 2 ,  = (]D[)½(2~) -m/z exp [ -  2 (EI+E2-r2a~2E1E2+'" ) ] ,  

(2.18) 
[D[ being the determinant of the matrix 

i l  

' a l l  a12 . . .  a i m  

D = 921 a2~" . . .  a2m , (2.18a) 
. ° ° ° , . . .  ° ° , , .  ° .  

a m l  a m 2  . . .  a m m  

where 
1 ~ M  

(2-18b) 
a~j IMI ~2ij " 

Here M is the moment matr ix 

2200... 211o. . . . . .  21oo...1 
M = 211o... 2020. . . . . .  2olo...1 (2-18c) 

. , .  . . . .  , .  , . . . . .  , , . . .  , 

21oo...a . . . . . . . .  200...0. 

and 2ij in (2.18b) refers to the 2 in the i th  row and 
j th  column of the matrix M. 

In all* practical applications 2110. . .  = 2011 . . .  = 
. . .  = 0, and 2200... = 20200 = . . .  = 1, so tha t  (2-18) 
simply becomes 

~(E1 . . .Em)  = (2~)--m/'~ exp [ - ½ ( E ~ + . . .  +E~)] .  (2.19) 

We thus see tha t  it is a comparatively simple mat ter  
to derive the expression for the joint probabihty 
distribution, and no purpose would be served in writing 
down a formal answer. I t  is enough to write down the 
moment-generating function and invert term by term, 
using the rules just given. The mathematics thus 
becomes merely a mat ter  of carrying out rather simple 
symbolic operations. As an example we shall give the 

1 
result for one of the possible terms in the set ~ A~ 
of the m.g.f. (2"17). :For instance, the term 

1 2zoo... 21110 . . .  
2 ~ 3 !  0 !  0 !  . . . U~X l ! l ! l ! . . . u l u 2 u a  

1 1  4 
= ~ 23oo...21n...ulu2u3 

gives rise, on inversion, to the term 

1 
12~oo 2100 H 4 ( E i ) H I ( E 2 ) H 2 ( E 3 )  

2t 6 . . . . . . .  

apart  from a Gaussian factor which is the same for 
all terms. The problem of inversion to obtain the 
complete asymptotic series is largely one of choosing 
a good notation; the process should become clearer 
when we deal with practical examples in the next two 
sections. 

3. Relat ions  between the s ign of a structure factor 
and the intensit ies  

3.1. Joint probability distribution of U2h and Uh 
We shall calculate the example in detail for the 

space group P1. The results will carry over to the 
case of higher space groups, and indeed the example 
is the prototype of all calculations of signs of a selected 
group of structure factors from the intensities of others 
related to them, e.g. in P21/a the signs of U2h, o,2~ from 

* E x c e p t  w h e n  ce r t a in  r e s t r i c t ions  are  m a d e  on  t h e  dis t r i -  
b u t i o n  of ~; see r e m a r k s  a t  t he  end  of A p p e n d i x  B.  
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the values of U~,'2 ~, ~ where k is a free index (Haupt-  
m a n  & Karle,  1953, p. 50; Cochran, 1954). 

For  brevi ty,  we use the  nota t ion  

E I = E 2 h ,  E.z=Eh.  

The subscripts on a mixed moment  or cumulant  are 
then to be t aken  as referring to E~ and Ee in t ha t  order 

mpq -- {(2 cos 2~2h . r )~ (2  cos 2 ~ h . r ) q ~ .  (3.1) 

The only mixed moments  t h a t  do not  vanish are 
those t ha t  are even in both suffixes, and those t ha t  
are odd in the  first and even in the  second. Their 
values m a y  be found directly by evaluat ing the aver- 
age (3.1) or more simply by  the method  of Be r t au t  
(1955a, b) (see Appendix  D). The mixed cumulants  
are then calculated by means  of the  equations (B.7). 

F rom (2.15) and (2.17) the m.g.f, function is given 
by  

~ '  (Ul, U2) exp [~2- "~ 2 { 1 ~12 2 = (u~+u~)] l+~l~--~.u~u~ 
1 [ ;~1~ u~u~] 

+-/ ~ 0 ! 2 !  

+ ~ k3 ! 2 ! ~ ~ + . . ~ ~ 

1 [2~12 Ul~/t2] [ ~ U 1 4 + ~ U 4 1  
÷ t - ~  ~1 ! 2! 

+ ~  [1!2! u~u2 + . . . .  (3.2) 

Inver t ing  according to the rules enunciated in the  
last  section, we obtain 

1 [ 1 ~12 
= - ~  ~ 2 ~ j ~ l + t l / ~ l ! 2 !  P(E~, E~.) -~ exp [ ~ ~E °- + E  ~'~ 

×H~(E~)H~(E~)+I [ ~  Ha(E1) ÷ ~ H,(Ee)] 

1 ( ~.~. ~2H~(E~)H~(E~) +~ \~ ,~./ 

1 
+ ~  [ ~3~. Ha(E1)Hu(Ee)+ ~ H~(E1)H,~(E~) ] 

3 ! 2 !  

1 r ~2;t40 
+ t - ~  [ i !  2! 4! 0! 

Hs(E1)H2(E2) 

~04 H~ (El) H6 (E2)] 
-~ 1 ! 2 ! 0 ! 4 !  

~- 6 ~  \ ~ ] 1  ( ~12 ~3Ha(E~)Hs(E2) + ... } . (3"3) 

Subst i tu t ing numerical  values for the ~'s (Appen- 
dix D), and put t ing  N = 2t, we finally obtain the 
asymptot ic  expansion 

1 I 1  P(E1, E2) = ~ exp [ -  1~2 1~21 

1 
8N [H'~(E1)+H4(E2)] + H2(Ea)Ha(Ee)* 

1 
N3/2 [¼Ha(E1)H2(E2)+ IH~(E~)H4(E2)] 

1 
N3/.,. [~Hs(E1)H2(E2)+~HI(E1)H6(E~)]* 

1 +~Hz(E~)Hs(E2)* + . . . } .  (3.4) 

In  this expression we have  marked  by  an asterisk 
those terms which would not  be given by Ber t au t ' s  
symbolic expansion of the  6-function (1955c, equat ion 
(III .1))  up to terms of the fifth order. These te rms 
could only be retr ieved by carrying his expansion as 
far  as the ninth-order  terms.  The other  te rms in (3.4) 
are identical with those t ha t  would be obtained from 
Ber tau t ' s  method  since it m a y  be shown (Cochran, 
pr ivate  communicat ion;  cf. Cochran & Woolfson, 1955, 
Appendix I I )  t ha t  the  averages t h a t  would occur in 
his expressions reduce to 

( E I ( E ~ - I ) }  = N - ½ ,  

(E I (E~-6E~)}  = -8N -a]2 , (3.5) 
( ( E ~ -  3Ex)(E~ - 1 )} = - 3N -3/e . 

We have  described the steps leading up to equat ion 
(3.4) in some detail  since all probabi l i ty  distr ibutions 
of interest  can be derived in the same way.  The only 
new work t h a t  has to be done in the  case of a different 
set of s t ructure  factors is the  calculation of the  non- 
vanishing mixed moments  and cumulants .  

1 ~\ ~ - - - - ~  ?O'os / 
, ~ .~,'%\ / 

0 

/ 
-" 0 1 

u~ 
Fig. 1. Joint probability distribution of U2h and Uh for space 

group P1 calculated from equation (3.4) for the particular 
ease N = 10. 

To obtain the normalized distribution the numbers wilbh 
which the contours are labelled should be divided by 2~. 

The broken line shows the bounding contour of the range 
permitted by the Harker-Kasper inequality U2h > 2U~--1, 
and therefore corresponds to P = 0 for the probabilit~y 
distribution. 
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We have carried the expansion (3.4) as far as terms 
in 1IN aP so tha t  we might  gain some insight into the 
importance of the various orders of terms in practical 
calculations of the dis t r ibut ion functions. We have 
computed P(E2h, Eh) from (3.4) for the case of 
N = 10 and the results are plotted in Fig. 1. This 
par t icular  value of 2V has been chosen so tha t  a com- 
parison might  be made with Fig. 2 of Vand & Pepinsky 
(1953), which was computed for this special case by  
numerical  convolution and is therefore str ict ly ac- 
curate. The contours including terms up to power 
1/hr~/~ agree with those of Vand & Pepinsky down to 
about  P = 0-3 ~nd show tha t  the theory is correct. 
The fact tha t  the contours beyond this range do not 
join quite smoothly into the l imits  set by  the Harke r -  
Kasper  inequali ty,  Ue~ _> 2 U ~ - l ,  arises from the 
neglect of higher-order terms in the asymptot ic  ex- 
pansion. By  including more terms the curves could be 
made to resemble the true ones to any  desired degree. 
The effect of including only the terms up to 1/N½ in 
the  computat ion m a y  be seen by  looking at Fig. 1 of 
Cochran & Woolfson (1955); this was computed from 
their  expression (3.12) for P(E2h, E~), which is correct 
to the order 1/N½. 0 n l y  the area near  the origin is 
well reproduced in this  approximation.  

3"2. The conditional probability distribution P(E2hlEh) 
A useful procedure for obtaining some insight into 

the nature  of the probabi l i ty  distr ibution is to evaluate  
certain characteristics of the conditional dis t r ibut ion 
P(E2~IE~) of Eeh on E~. The expression for P(E~[E~) 
is, of course, identical  with P(Ee~, E~), but  the new 
notat ion emphasizes tha t  we shall be concerned with 
the probabi l i ty  distr ibution of E2h as a function of Eh. 

We first make some remarks about the mathemat ica l  
form of the conditional distr ibution,  and about  nota- 
tion. 

3 .21.--If  F(x, y) is a bivar ia te  probabi l i ty  distribu- 
t ion we shall  denote the conditional dis tr ibut ion of x 
on y by  F(xly) or by  Fu(x), which m a y  be thought  
of as a set of univar ia te  distr ibutions depending on 
the parameter  y. More specifically, if we wish to em- 
phasize tha t  the various moments  and characteristics 
of Fu(x) depend on y, we include y as a subscript,  
e.g. the conditional mean and variance of x are wri t ten 
<x>~ and %@) respectively. More generally we shall  
denote the sth moment  of x by #~(x)~ and the sth 
moment  about  the mean by/~s(x)~: 

f 2  xS F (x, y) dx 
#~(x)~-  <x~>~ = , (3.6) 

f 2  F(x, y) dx 

W e  note that 
~,(z)~ -- < (x -<~>~)9  • 

2 a ~ -  #~ = / ~ - < x >  , 

' 3 ~ =  ~ - 3 ~ d x > - < x >  . 

(3.7) 

(3.8) 

(3.9) 

If any  of the characteristics is plotted as a funct ion 
of y, we shall speak of the curve of regression of the 
mean of x on y, the regression of the variance, etc. 

When the conditional probabi l i ty  Fy(x) is not 
Gaussian, it m a y  be expanded as a Gram-Charlier  
series, as in § 1: 

1 t~,(x)  
Fy(x) = ~ y ( x ) + ~ . v / ~ 8 ( x ) y - - ~ x y - + . . .  , (3.10) 

where 
1 F (x- <x~ y)21 q~,j(x) ~ ( 2 ~ ) ½  exp L 2--~ ] " (3.11) 

The third moment  in (3.10) determines the skewness 
of the distribution. The higher-order moments  (or, 
more strictly, the cumulants ;  see equations (1-15) and 
(1.18)) reflect the more subtle deviations from the 
Gaussian curve. When these can be neglected the 
position of the mode (most probable value) is given by 

<x>+/~3/2~ 2 . (3.12) 

All the probabi l i ty  distr ibutions of interest  in this  
and later sections are adequate ly  described by  the 
mean,  variance and th i rd  moment ,  since it will tu rn  
out tha t  the lat ter  are of order 1/Ni, 1 +O(1/N), and 
1/N 3/2 respectively. This follows from the fact tha t  the 
random variables we are dealing with (i.e. the struc- 
ture factors) are themselves sums of _h T random 
variables (the atom contributions). Furthermore,  be- 
cause we have represented the probabi l i ty  distribu- 
tions by  a t ru ly  asymptot ic  series, the actual  values 
we shall  obtain for the characteristics will be str ict ly 
correct to the degree of approximat ion we choose. 

The probabi l i ty  distr ibution (3.4) is of the form 

F(x,y) = ~ ( x , y ) +  ~ fl/i-6-x-V--~ujq~(x,y) (3.13) 
i+]>_3 ~t 

= q~(x, y ) l 1  + ~ (-1)i+iflijHi(x)Hj(y)], (3"14) 
L i+]>3 .1 

where 

~(x, y) = q~(x)q~(y) = (2~) -1 exp [-½(x2+y2)] (3.15) 

is the bivariate normal distribution. The moments  
(3.6) will then be given by 

~i+; ~ (x, y)] 

/~(x)y' = (3.16) ~.~ [ ~i+~(x'.Y)l dx 
~_~ Lcf(x, y)+.~ flij ~x/~y~ j 

= /+]>3 (3"17) 
xo0+ _r ~ j o ,  

i+j>_3 

where 

foo ~/+J (x, y) I~j = x s q~ dx (3.18) 
._~ ~x / ~yJ 
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(note tha t  on the lef t -hand side s is a superfix, not 
a power). The I~j m a y  be calculated once and for all, 
as in Appendix  E. The flu will be known (in terms of 
the cumulants)  for the par t icular  probabi l i ty  distribu- 
t ion of interest  by  comparing the lat ter  with (3.14). 
They m a y  then  be subst i tu ted in (3-17) to give the 
desired moment .  The moments  about  the mean  are 
then found by  using equations (3-8) and (3.9). The 
calculations are ra ther  lengthy  but  straightforward. 

3 .22 . - - In  this  way we have determined the charac- 
teristics of the dis t r ibut ion P(E2h[Eh). Writ ing 
E2h = El,  Eh = E2, the results to the order 1/N 312 are: 

Mean" <Eeh>zh 
1 1 

2N½ ( E ~ - I ) -  ~-ff~ [½H4(E~)+~Ho(Eh) ] 

1 
1 -- ~-~ H a (Eh) 

Variance" o '~.(E2h)= 

(3.19) 

1 -  4-~ H~(E.) 
(3.20) ] 

1 
- ~N Ha(E,.) 

- 1 + 1/2N-E~/N. (3.20a) 

(Equat ion (3-20a) is obtained by expanding the 
denominator  by  the binomial  theorem, which will be 
justif ied over the range of E we shall be concerned 
with). 
Third  moment  about  the mean:  

1 
:t 3 (E2h)E h -- Na/2 [-- ~H2 (Eh) 4- H 4 (Eh) 4- ~ H  6 (Eh) ] . 

(3"21) 

1 3"16 

0 0 ~ "Eh 
~' Uh 

~2(E2h~ 
0 t variance 

. . . . . . . . . . .  

-14- lhird moment / 

O< Eh ~1 
Uh 

Fig. 2. Regression of the mean, variance and third moment of 
E2h on Eh for P1, N ---- 10. 

The full lines are calculated from the expressions (3.19), 
(3.20) and (3.21) respectively, which are approximations 
correct to the order 1/N3/2. The broken lines represent the 
corresponding approximations to the order 1/N½, and would 
follow, for instance, from the theory of Cochran & Woolfson 
(1955). 

In  Fig. 2 we have plotted the regression curves of the 
various characteristics for the case N = 10, computed 
from the above equations. 

If  we include only terms up to the order 1/N½, 

1 (E~-1) ,  a variance we see tha t  E2h has a mean  of ~ - ~  

of un i ty  and a th i rd  moment  of zero. (The regression 
curves to this approximat ion  are also plotted in Fig. 2.) 
Hence, taking account of (3.10) and (3.11), it is clear 
tha t  the dis t r ibut ion is a simple Gaussian one, and 
exact ly  equivalent  to Cochran & Woolfson's (1955) 
equat ion (3.8) when the la t ter  is rewrit ten in terms 
of E 's  ra ther  than  U's. We thus see tha t  Cochran & 
Woolfson's result  is an approximat ion  correct to the 
order 1/N½, and, as a l ready mentioned,  will give a good 
representat ion of the probabi l i ty  distr ibution so long 
as Eh and E2h are small  compared with their  m a x i m u m  
value, N½, as is commonly the case in practice when 
h r is large (see § 5.2 below). When  Eh is large, the 
approximat ion  is inadequate,  as m a y  be seen from 
Fig. 2, and indeed entirely misleading, mathemat ica l ly  
speaking. Thus when IEhl-~N½, the variance is no 

longer un i ty  but  tends to zero, as required by  the 
Harke r -Kaspe r  inequal i ty .  Our equat ion (3.20), 
which is the correct approximat ion  to the order 1/N 3/2, 
does indicate this effect correctly, as will be obvious 
from (3.203). 

This means, in turn,  tha t  Cochran & Woolfson's 
(1955) expression (3.10) for the probabi l i ty  P+(E2h) 
tha t  E2h is positive gives an underes t imate  for this  
probabi l i ty  when E~ or E2h is large, since it is based 
on their  equation (3.8) in which the variance has been 
taken as a constant  (unity) not depending on the 
magni tude  of E h. The correct expression for P+(E2h) 
m a y  be found from our equat ion (3.4) for P(E2h, Eh) 
by  using the very simple but  powerful result  of Ber taut  
(1955a, 1956b) tha t  

P± = l±½Po/Pe, (3.22) 

where Po and Pe refer to the terms in the  probabi l i ty  
expression which are respectively odd and even in 
the structure factor involved (E2h in this case). This 
gives 
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P + (Eeh) = 1, 1 

1 1 
E 2 h ( E ~ - l ) + t e r m s  i n . i n  (3.4)+ , . ,  

X 

l + t e r m s  in 1/N in ( 3 . 4 ) + . . .  i . (3.23) 

When all terms beyond that  in 1/N½ are dropped, 
the result of Hauptman & Karle (1953, p. 40) is 
obtained. 

We have not computed P+(E2n) for the example 
N = 10 since its behaviour is quite clear from the 
general expression P(E2h, El,) plotted in Fig. 1. For 
large values of Eh we should expect the probability 
distribution to pass smoothly into the range of the 
Harker-Kasper  inequality (where P+(Ee,,)= 1), as 
shown in our Fig. 1. I t  is thus clear tha t  when a sign 
is 'almost but  not quite' determined by the inequality 
we can quite safely take it as so determined. These 
remarks are made here because they are also ap- 
plicable to the more important  case of the Sayre-  
Cochran-Zachariasen sign relation (see (4.1) below) 

S(h) ~ S ( h ' ) S ( h + h ' ) .  (3.24) 

Cochran & Woolfson's (1955) expression (4.16) for the 
probability tha t  this holds is again an underestimate 
when the structure factors involved are large. 

3-3. The regression of E,, on E2,, 
The result (3-23) gives the probability of the t ru th  

of the sign-determining relation 

S(2h) ~ S(E~-l) (3.25) 

and would formally close this section. However, as 
an introduction to the wider discussion of the phase 
problem, it is instructive to derive the characteristics 
of the conditional distribution P(Eh[E2h ). <Eh>F~2h is 
of course zero, and we find that ,  to the order 1/N a/2, 

1 E 1 
l + ~ -  i 2h---~H4(E2h) 

1 1 
2 N  3/2 H3(E2h) - 8--N~ H5 (E2h) 2 

<E,,>z2,, = 1 
1 - 8-~ Ha(Eeh) 

1 
= 1 + ~ E2h, (3.26) 

where, in the second step, we have made use of the 
result (cf. equation (4.20a) below) 

x - A  ~4Hs(x)+Hs(x)} 
= x .  (3.27) 

1 - A H 4 ( x  ) 

Hence we have shown that  

1 
<E~- I>  = ~-~ E2h (3.28) 

is correct not only to order 1/N½, as might at  first 
be thought,  but to order 1/N 3/2. We would surmize 
tha t  it may be true to an even higher order of ap- 
proximation. The average in (3.28) means an average 
over an ensemble of all possible structures having the 
same number of atoms. Statistically, we might say 
(cf. Bullough & Cruickshank, 1955) tha t  N½(E~,-1) 
provides an estimate of E2h. A measure of the reli- 
ability of such an estimate is provided by the variance 
of E~, about its mean. By the methods of § 3.21 and 

E 4 Appendix E, we can calculate < h>E2h, and we find 
tha t  the required variance 

<E~,>-<E~,> ~ = 2 +  E~h--N (3--Eih/ .  (3"29) 

Hence the estimate N½ ( E ~ -  1) of E2h has a variance of 

2N + 4N½ E2h-- 2 (3 -- E~h ) . (3"30) 

When E2h is small, the dominating term in the last 
expression will be the first, and we see that  in this ease 
Bullough & Cruickshank's approximate trigonometric 
method for calculating the variance is adequate. 
However, when E2h is large and positive, the variance 
is much greater than would appear from the first term 
2N. In this case, we should not use N½ (E~,- l)  as an 
estimate of E2h but the accurate formula of Cochran 
(1954) given later (equation (5.3)). When E2h is large 
and negative, we see tha t  N½ (E~,-1) is a very good 
estimate of Eeh, as is to be expected, since in this case 
Eh is likely to be small. 

3"4. The determination of signs from intensities in space 
groups of higher symmetry 
In space groups other than P1, the moment m12 

will be non-vanishing for other structure factors 
besides the pair E2h and E h. Thus in P21/a , m12:4= 0 
for the pair E2h,0,2z and Ehkl (Hauptman & Karle, 
1953, Table 10), and, to the order 1/N½, 

P+ (E2h, o, 21) = ½ + ( -  1)l'+k 2l/2N~ IE2h, 0,ezl(E~,k,z-1). (3"31) 

Since k is a free index one may sum over it (Hauptman 
& Karle, 1953, equation (4-15)), so tha t  

S(E2h,°,2I) "~ S { "-'~ ( -  h+k 2 } 1) (Ehkz--1) . (3-32) 
k 

Cochran (1954) has shown that ,  quite irrespective of 
probability theory, the deep origin of (3.32) is to be 
found in the exact formula expressing the relation 
between the Pat terson-Harker  section at y = ½ and 
the projected electron density on y = 0: 

E2h, o,2l N½ h+k ~ )k = (--1) (Ej, kz-- 1 (3"33) 

1 x 
= N½ ~ k__~0 (--1)h+k(E~z--1) , (3-34) 

where K is the number of terms in the summation. 
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(Vand & Pepinsky (1953, 1954) had earlier pointed 
out the connexion of the results of the probability 
theory with the Harker section.) Cochran has discussed 
the physical basis of the conditions under which (3.34) 
gives a reliable estimate of the sign of E2h, o. 2z. 

From the point of view of statistical theory, by 
analogy with the discussion in § 3"3, one of the terms 
( -  1)h+~N½ (E~k Z- 1) provides an estimate of E 2 h  ' 0, 21 
with a variance of the form 

aN+N½f(E2h, 0, 2z) + b ,  (3"35) 

where a and b are constants. Except when E2h, 0,2t is 
large, the first term will dominate. Now on reasonable 
assumptions (see § 5.2 below), the number of terms 
/£ in the summation in (3.34) will be proportional to 
Nk, so tha t  the variance of the estimate of the E2h, 0, ez 
through the formula (3.34) will be of order N 2/3. 
Hence, as the number of atoms in the structure in- 
creases, the reliability of the formula will decrease. 
The physical reason is the increasing number of 
'non-Harker '  peaks to be found in the Patterson sec- 
tion at y = ~-. 0n ly  when E2h, 0,21 is large and the 
second and third terms in (3.35) are important can we 
expect the sign indication to be reliable. 

The argument in the last paragraph may appear to 
be rather condensed, but the reader will easily be able 
to fill in the details for himseff after reading § 5.2 
below, where other formulae involving a summation 
over a set of contributing terms are discussed at some 
length. 

same form. Thus, while the probability of the t ruth  of 
relation (4-1) is formally independent of Ua_a,, in the 
practical sign determination of Ua one considers both 
Uh+h, and Uh--h', and the larger of the two will 
dominate. In what follows h a is to be understood as 
referring to either h + h '  or h - h ' ,  without prejudice. 

The probability distribution P(E1, E2, Ea) may be 
easily written down, following the rules given in § 2. 
The mixed moments 

mpqr = <~(hl) p $(h2) q ~:(hs) ~> (4"3) 

subject to h l + h 2 + h  a = 0 

are found by Bertaut 's  method in Appendix D for P1. 
The moment-generating function to the order 1/N a/2 
is given by (2.15) and (2.17): 

exp [---2- (/~1 ÷ 1 ,  9. ,tb2 _.] _2 ,/£3) ]2 j~(Ul, U2 ' U3 ) 
1 

1 . . cyc.] ~ 1 [ +-/[4,X0~°0, u~ + + 2~ [1 !)'11!11 UlU2U312 

1 2113 cyc.] 
+ ~  [1 ulu2u~+ ! 1! 3! 

÷ t-11/2 [1 [2;1111 [ UlU2 U3] [4 [20°[°0 [ U4 ÷ cyc. ] 

1 1 2 ; ; :  1 ]3 + 6 ~  1! ! ul u2 u a ; (4-4) 

4. Rela t ions  be tween the sip, ns of s t ruc tu re  f a c t o r s  

4.1. Probability distribution of Eu, Eh, and Eh_t_ h, 
I t  is well known tha t  when the uni tary structure 

factors Uh, Uh, and Uh+h" are large enough their signs 
are probably related by the Sayre-Cochran-Zacharia- 
sen (S.C.Z.) relation 

S(h) ~ S ( h ' ) S ( h ' + h )  (4.1) 
or 

S(h)S(h')S(h'+h) > 0 .  (4.1a) 

In this section we shall find an exact expression for 
the probability that  this relation is true. 

The notation above is in common usage but hides 
the symmetry  between the three structure factors 
entering into relation (4.1). We shall accordingly 
denote the indices by hi, h 2 and h3, where 

hl±h2±h 3 = O. (4"2) 

Remembering that,  for P1, F(h)  = F ( - h ) ,  equation 
(4.2) means tha t  if h i and h 2 are identified with h 
and h'  respectively, then h 3 may be identified either 
with h + h '  as in (4.1) or else h - h ' .  I t  is then easy 
to show tha t  the joint probability distribution of 
Uh, Uh,, Uh+h, and Uh-h, factorizes into a product 
of the two probability distributions P(Uh, Uh,, Uh+h') 
and P(Uh, Uh, and Uh--h'), which have exactly the 

here 'cyc.' stands for the cyclic permutations of the 
indices; for example in the bracket in 1/t the terms are 

1 4 4 4 
4--~ (24°°ul + 2°4°u2 + 2°°4u3) " 

Inverting, and substituting values for 2pq r from 
(D.11), we find for the joint probability distribution 
of E 1 (= Eh), E2 (= Eh,), E 3 (= Eh+h, ) 

1 
P(E 1, E 2, E3) (27~)3/2 exp [-½ (E~+E~ +E~)] 

x 1 + ~  E1E2E3--~- ~ [H4(E1)+eye. ] 

1 
+ ~-~ H2 (E~)I-I2 (E~)H2 (Ea) 

1 
2N3/2 [H 1 (El) H 1 (E~) H 3 (E3) + eye.] 

1 
8N3/2 [H 1 (El) H 1 (E2) H 5 (Ea) + eye.] 

+ 6 - N - ~  H , ( E ~ ) H ~ ( E ~ ) H ~ ( E ~ )  + . . . , (4.5) 

where 'cyc.'  now stands for the cyclic permutation of 
the arguments of the Hermite polynomials, so that  
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the expression is symmetr ica l  in E 1, E s and E 3, as 
required. To obtain a general idea of the form of the 
distr ibution we have computed the sections of 
P(E1, E2, E3) at E 1 = 0 and E 1 = 2 for the  case of 
N = 10 equal atoms. The results are plot ted in Fig. 3. 

U h , 

(o) 
0 

Oh = 0 

- 1  

1 

O h ' 

(b) o 
Uh=0"63 

-1  
m '  

\N 

0 

\ 

Uh+w 

Fig. 3. Two sections of the  joint  probabi l i ty  dis t r ibut ion of Uh,  
Uh" mad Uh+h'  for space group P1,  calculated f rom equat ion  
(4.5) for the  par t icular  case of N = 10. (a) and  (b) show 
the distribution of Uh' and Uh+h' for Uh = 0 and Uh = 
0.63 (i.e., Eh = 2) respectively. 

The contours in (a), reading from outwards in, are 0, 0.01, 
0.05, 0-1, and then in steps of 0.1 to 0.8; in (b) they are 0, 
0.010, 0.025, and then in steps of 0.025 to 0.150. These 
values have to be divided by (2~)3/2 to obtain normalized 
values. 

The outermost zero contour is obtained not from the 
probability theory, but from the inequality (4.7). 

The contours of P fit very smoothly into the outer- 
most surface P = 0, which is obtained quite inde- 
pendent ly  of the probabi l i ty  theory  by means of an 
inequal i ty  to be described in the next  sub-section. 
This shows t h a t  our theory  (including terms up to 
1IN 3/2) gives the correct form of the probabi l i ty  
distribution, even for relat ively high values of E 1, E 2 
and E 3. The approximat ion  obtained by including the 
terms only as far  as 1/N½ gives an accurate  description 
only in a relat ively small range near  the origin 
El ,  Es < N½. This will be clear when we s tudy  the  
form of (4.5) in more detail  later. 

4.2. An inequality relating Uh, Uw and Uh+w 
Karle  & H a u p t m a n  (1950) have  described a ve ry  

general method  of constructing inequalities among a 
set of m structure  factors Uh~ whose indices are 
linearly related. The relevance of this to the  calcula- 
t ion of the  probabi l i ty  distr ibution of such a set, is 
t ha t  the limiting case of the inequal i ty  (i.e. equali ty) 
demarcates  a forbidden region in the  m-dimensional 
space formed by  the axes U~i, irrespective of the  
number  of a toms in the  uni t  cell. An example  of this 
has a l ready been given in the  case of P(U2h, Uh), 
where the  curve U~ = ½(1 + U2h) gives the  outermost  
boundary  of the possible range of the  s t ruc ture  factors.  

For  the par t icular  case in hand,  we can apply  
Kar le  & H a u p t m a n ' s  (1950) equat ion (34), to obtain 

1 
INUh+h,--NUh Uh,] <-- ~ (N2-N  z V~)½ (NZ-N ~ U~,)½ . 

(4-6) 

Cancelling the factor  N,  squaring, and writ ing in a 
form symmetr ica l  in the three s t ructure  factors,  we 
obtain finally the desired inequal i ty  

2 Uh Uw Uh+w >-- U~ + U~, + U~+w- 1 
or  

I f  
UhUh'Uh+h" > ½(U~+U~,+ 2 __ U ~ + h ' ) - -  2 • ( 4 " 7 )  

V~l-]- U2b,+ V2h+h , ~ 1 , (4.8) 

then UhUwUn+w ~ 0, which means t h a t  the  S.C.Z. 
relation (4.1) must  certainly be t rue  in the  region 
outside the unit  sphere. This condition (4-8) does not  
appear  to have been noticed before (but compare 
Cochran (1952)). I t  would seem to be of pract ical  use 
only for very simple crystals. Not  all the region outside 
the unit  sphere is permissible, only t ha t  contained 
within the limits set by (4.7). 

For  brevi ty,  writ ing 

U h = X ,  U w = y ,  U h + w = z ,  (4"9) 

we see t ha t  the allowed region of var ia t ion of x, y 
and z is bounded by the surface 

xyz = ½(x2+Y2+ z~) 21 • (4"10) 

Fig. 4 shows a photograph of a model of this surface 

inscribed in the cube - 1  < y < 1, I t  looks like a 
2: 

te t rahedron with curved faces, and in fact  we might  
call it a 'parabolic te t rahedron '  since a section con- 
taining a face diagonal of the  cube is a parabola  (in 
contrast  to a triangle in the ease of a te t rahedron) .  
I t  is easy to show tha t  sections of the surface parallel  
to a cube face are ellipses. For  a section a t  x > 0, say, 
the major  semi-axis has a value (1 +x)½, and lies in the  
direction z = y; the length of minor semi-axis is ( l - x ) ½  
and lies in the direction z -- - y  (see outermost  con- 
tours in Fig. 3). When x is negative,  the  directions of 
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Fig. 4. A model of the surface xyz -~ ½(x~-y~Tx2)--½ set in 
the cube --1 _~x_~ 1, - -1  _ ~ y  ~ 1, - - 1  ~ z  ~ 1. 

Sections of the surface parallel to a cube face are ellipses, 
and two of the three such sets of sections are indicated, 
one by pieces of cardboard and the other by wires. 

The surface encloses the allowed domain of variation of 
Uh ---- x, Uh' ----- y, U h - t - h '  ~-  Z. 

the major  and minor axes are interchanged.  I t  is also 
easy to show tha t  a x section meets  the  sides of the  
bounding square a t  (y = 1, z = x) and  (y = x, z = 1). 

Ki ta igorodski  (1954) has proved t h a t  the product  
UhU~,Uh+h, has a min imum* value of - ~ .  I t  is easy 
to derive this result  from the more general  inequal i ty  
(4.7). Taking a section a t  x > 0, as in Fig. 3 (b), the  
min imum value of yz occurs a t  the  points of inter- 
section of the  bounding ellipse and the minor  semi- 
axis y = - z ,  i.e. a t  ± y  = ~:z = {½(I-x)}½. Hence,  
for fixed x, the min imum value of yz is - ~ ( 1 - x )  
a n d  t h a t  of xyz is -½(x-x~) .  I t  then  follows tha t  xyz 
will have  an absolute min imum at  x = ½ of value - ~ .  
By symmet ry ,  minima will occur a t  the cyclic pe rmuta -  
tions of (½, ½, -½).  

We note, incidentally,  t ha t  it can be shown in a 
similar way  from the H a r k e r - K a s p e r  inequal i ty  
U~h _> 2 U ~ - l ,  t h a t  the min imum value of UohU~ is 
also equal to - } .  

4"3. Characteristics of the probability distribution 
P(Eh, Eh,, Eh+~,) 
To get some insight into the na tu re  of the  distribu- 

t ion expressed by  (4.5), and  also to obtain an ex- 
pression for the  probabi l i ty  t h a t  the  S.C.Z. relat ion 
(4.1) holds, it is necessary to hold either one or two 
of the variables E h -- El ,  E h, ~- E 2 and Eh~_ h, ---- E a 

* 'Maximum negative' would give the correct emphasis. 

fixed, and  to calculate the  corresponding conditional 
distributions.  

The conditional probabi l i ty  P(E1] E~, Ea) m a y  be 
expanded  in the  form of a Gram-Charl ier  series 
(cf. (3.1o)).  

PE~,~3(E~) = (1/(2~)a~2,E~) -1 
× e x p  [--(E~-~E~)E2,E~)~/2a~2,E3] (4.11) 

+ t e rm in /z  3 
, . , , .  • 

In  wha t  follows the  th i rd  m o m e n t  abou t  the  mean  is 
very  small  or zero (as the  reader  m a y  check for him- 
self by  drawing the  curve corresponding to a line of 
constant  E~ or E 3 in Fig. 3). We shall thus  omit  the  
corresponding te rm completely,  so t h a t  we are dealing 
only with Gaussian distributions.  I t  is only necessary 
to calculate the  mean  (E1)E2,E a and  the  var iance 
a~2,E3(E1) as funct ions of E~ and  E 3. This m a y  be 
done by  means  of the  operations outl ined in Ap- 
pendix E. 

We find, to the  order 1/N s/2, t h a t  

1 1 
E~Ea+ ~[ -Ha(E~)H~(Ea) -HI (E2)Ha(Ea) ]  

1 
+ ~ [ -  Hs(E~)Hs ( E a ) -  H 1 (E~)Hs(Ea)] 

and  

2 aE,, ~3(E1) = 

1 
1 - ~-~ [H , (E2)+H4 (Ea) ] 

(4"12) 

1 ! 
1 - --:-__[H,(E~+HJE3)I÷---(1- E~ ~ - E a2 ) 

4NL , ,  , , J N ,  

1 -  ~-~ [H,(E2) + H,(Ea) ] 
(4.13) 

1 1 
- 1 + ~ - ~  (E~+Ea2), (4.13a) 

expanding  the denominator  by  the  binomial theorem. 
These funct ions are plot ted for the  case of N = l0  
equal a toms  in Figs. 5(a) and 5(b). They  are, of course, 
symmetr ic  in E 2 and Ea, but  cannot  be expressed only 
in terms of the  product  E~Ea and its higher  powers. 
The expressions involve products  of mixed powers of 
E 2 and  E 3. This is i l lustrated by  a comparison of 
Figs. 5(a) and 5(c). I n  the  la t te r  we have  s imply 

1 
plot ted ~-~ E~Es, which is the  correct approximat ion  

of order l/N½ to the  mean  <El). To the  same order the 
var iance is uni ty ,  and if these approximat ions  are 
subs t i tu ted  in (4.11) we obtain  (with a slight reversion 
in notat ion)  

P(Eh) = (2~:)-½ exp - ½(Eh---N--~ Eh,Eh+u,) ~ , (4-14) 

which is the  expression originally obtained by  Woolf- 
son (1954). I t  will now be clear t h a t  his results are 
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1 3 " 1 6 ~  1 3"16 ~ . . ~ ~ . ~  

! \ \ \ \ \ \ \ ' %  1 s 

~ 1 "0 

0"5 

(a) 0 o' ~ i i , ,  , , (b) 
0 ~-~+h' ~ 0 " Eh+a' ~ '3"15 

Uh,h' ~ Uh+h' • 1 

1 3"16 

(c) 

Uh+h'  

3.16 

T 
~,Eh' 

~ 2"0' 

  1.5, 

1"0 

0"5 

Unity 

- ( ~ )  
t 0 , , , 

0 Eh÷h r' ' 'L'~ i3"16 0 Eh+h' ~ '16 
1 Uh+h' :' 1 

Fig. 5. Regression of (a) the mean, and (b) the variance, of Eh on Eh" and Eh+h', for P'I, AT ---- 10, calculated from equations 
(4.12) and (4.13) respectively. The broken lines in (a) are obtained by extrapolation, since the approximation used (of order 
1/N3/~') breaks down at very large values of E. (c) and (d) show the mean (---- l/N½ Eh'Eh+h') and variance (= 1) respectively 
for the approximation to the order l/N½ (Cochran & Woolfson, 1955). 

accurate  only to the order l/N½, and will apply  only 
over the  range of values of E small compared with N½. 
The approximat ion  correct to order 1/N 3/2 is given 
by  subst i tut ing (4.12) and (4.13) in (4-11). We have 
not  plot ted out the distribution P(En)  for our example 
of 10 a toms in the cell, since, as a l ready stressed, it 
is not  simply a function of the product  En, Eh+n,. We 
should have  to plot a family of distr ibutions for various 
combinations of Eh, and En+n,. The form of this 
distribution, however,  is clear from Figs. 5 (a) and 5(b). 
As En, and En_n, increase, the  mean increases ra ther  

1 
less slowly a t  first t han  ~-~ Eh, Eh+h, along the diag- 

onal, bu t  the variance falls fair ly rapidly  below the 
value uni ty ,  the contours being approximate ly  

spherical (cf. equation (4.13a)). This means t ha t  the 
distr ibution becomes much sharper  around the mean 
tha t  Woolfson's approximate  formula (4.14) would 
suggest. 

To show the general character  of the distribution,  
we have  used (4.12) and (4.13) to compute the prob- 
abil i ty t h a t  En has the same sign as the product  
Eh,Eh+h, irrespective of the value of Eh. This prob- (mean / 
abili ty is easily shown to be equal to £b \var iance½/ '  

where £b(x) is the s t andard  statist ical  integral 

~b(x) = (2z)~ ~_~exp (-½u2)du. (4.15) 

The results are plotted in Fig. 6, and it is sat isfying 
tha t  the computed contour P = 1 falls so close to the 
unit  circle E~+E~ = N,  as is required by the condition 

3"16 

EJ+t,, 

1"0 

! ! 
0 F.~ _~ 3"16 

Fig. 6. The probability that Eh has a positivo value, irrespec- 
tive of its magnitude, as a function of Eh' and E h + h ' ;  
Pi ,  N = 10. Computed from equations (4.12), (4.13) and 
(4.15). 

A plot of the approximation to order l/N½ would give a 
set of rectangular hyperbolae similar in appearance to 
Fig. 5(c). 
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(4.8). The plot is intended to be only illustrative in 
character, since, in any application of the theory, the 
magnitude of E 1 will always be known. 

The probability P+(E~) tha t  E1 is positive, taking 
into account the (known) value of E 1, is calculated as 
follows. When the form of the probability distribution 
of a random variable is Gaussian, as is tha t  of E 1 in 
(4.11), then it follows quite generally from the reason- 
ing of Cochran & Woolfson (1955, § 4.3) that  the 
probability tha t  it has a positive sign is given by 

P+(EI) -- ½+½ tanh CE.I~[_:, _x mea_:~n/ (4.16) 
( variance ) "  

For our problem, the mean and variance to be sub- 
st i tuted in this are given by equation (4.12) and (4.13) 
respectively. If the terms of order higher than 1/N½ 
are dropped, (4.16) reduces to the result of Cochran & 
Woolfson (1955) (their equation (4.16)). The effect of 
retaining the higher-order terms in (4.16) will be 
obvious from the example plotted in Fig. 5 and dis- 
cussed in the last paragraph. At high values of E~ and 
E3, P+(E1) is higher than would be suggested by the 
simple Cochran & Woolfson equation. The effect is 
entirely analogous to tha t  discussed in § 3.22. Cochran 
& Woolfson's (1955) equation (4.16) thus gives an 
underestimate of the probability when the structure 
factors involved are large. This should be borne in 
mind in deciding on weightings for the S.C.Z. relations 
in a method for sign determination such as, say, tha t  
of Cochran & Douglas (1955) or related methods. In 
practice it would be very tedious to use the correct 
weightings given by equations (4.16), (4.12) and (4.13) 
above, but the theory does suggest tha t  S.C.Z. rela- 
tions involving very large structure factors should be 
kept in a separate class, or classes (cf. Cochran & 
Douglas), rather than a t tempt  to use the simple 
approximate formula uniformly for all the sign rela- 
tions. 

Since in (4.12) E 2 and E 3 occur only as products 
of odd powers and in (4.13) only as even powers, 
P+(E~) as calculated from (4.16) also gives the prob- 
ability P+(E1E2E3) that  the sign relation (4.1) is true, 
when values of [E2[ and [Ez[ are substituted, in (4.12) 
and (4.13). I t  will be noticed, however, that  the 
expression is not completely symmetrical in El, Ee 
and E 8. This asymmetry  arises from the manner of 
derivation of (4.16) from (4.11) in which one of the 
three structure factors is singled out. The correct 
expression for P+(E1E~E3) may be calculated from the 
joint distribution P(E 1, E 2, Ea), equation (4.5), by 
using Bertaut 's  equation (3.22). In the latter Po is to 
be interpreted as the terms in (4.5) which are odd in 
El, E 2 and E a. This is obvious from the form of (4.1a) 
and the fact tha t  the only powers ~l~2~a~PPq~r occurring 
in (4.5) are those with p, q, r either all odd or all even. 
(It may be proved quite generally by the methods of 

Appendix D that  moments mpqr with mixed odd and 
even indices all vanish.)* The result is 

P+ (E1E~E3) = ~- + ½ 

[ _ 1 [E1EgE81 + terms in ~-~-2 in (4.5) 
N½ 

x 1 1 ' 
1 - ~-~ [H a (El) + cyc. ] + ~-~ H e (E 1 )H e (E+)H e (E3) 

(4.[7) 
The last equation may be compared with that  ob- 
tained after substituting in (4.16) from (4.12) and 
(4.13). I t  will be found that  some of the 1/N a/2 terms 
in E 1 are missing in the latter. The departure from 
complete symmetry,  however, is only slight and the 
general arguments given in earlier paragraphs are quite 
unaffected. On neglecting all terms beyond those in 
l/N½, equation (4-17) reduces to the result of Haupt-  
man & Karle (1953, equation (3.30)). 

4.4. The statistical theory of Sayre's equation 
For the case of equal atoms, Sayre (1952) proved 

that  
1 1 H 

Uh = ~ fl_" Uh, Uh÷w, (4"18a) 
h'  

where H is the number of terms in the summation. 
In  other words, as shown by Hughes (1953) and 
Cochran (1953), 

Uh = -h T Uh, Uh+h' W 
o r  

h '  
E h  = N ½ E h ,  E h +  h, , (4-18b) 

Sayre's equation is strictly true only over an infinite 
range of h' .  Cochran & Woolfson (1955) have studied 
the probability distribution of the values of 'a Sayre 
product '  Eh,Eh+h. for a fixed value of Eh, and their 
expression (4.1) will be accurate to the order 1/N½ 
since their derivation is essentially based upon Woolf- 
son's equation (our equation (4.14)). I t  is possible to 
carry out a derivation on similar lines but based upon 
the more accurate formulae given earlier in this sec- 
tion. This is, however, very tedious and we shall not 
give the calculation here. Instead, we shall content 
ourselves with calculating the mean value and variance 
of a Sayre product EwEh+ h, as a function of Eh by 
the methods of Appendix E. Note that ,  while Sayre's 
equation (4.18) is the average over a range of values 
of h' ,  our whole theory is based upon averages over 
the atomic positions r. From the symmetry of the 
trigonometric form of ~(h) (equation (1.4)) in h and r 

* T h i s  s t a t e m e n t  is t r u e  o n l y  in  t h e  g e n e r a l  case .  T h e r e  
c a n  b e  e x c e p t i o n s ,  h o w e v e r :  e.g.  if  /i71 _~ E h ,  E 2 - - E a h ,  
E a -~ Edh,  t h e n  m221 ---- 2. 

I a m  i n d e b t e d  to  t h e  r e f e r e e  fo r  t h i s  r e m a r k ,  a n d  a lso  fo r  
s o m e  o t h e r  s u g g e s t i o n s  fo r  m a k i n g  t h e  p a p e r  c lea re r .  

A C 11 37 



530 JOINT PROBABILITY DISTRIBUTIONS OF STRUCTURE FACTORS 

we expect tha t  the two averages will yield the same 
result (see Hauptman & Karle, 1953, equation (3.17)). 
We shah soon see that  this is indeed the case. 

Writing Eh, = El, Eh,+a = E2, Ea = Es, we find 
from equation (E.14), together with (E.13) and (E.18), 
tha t  

1 1 1 
N½ E a -  ~ H a (Ea) - 8 ~  H~(Ea) 

<ExE2>E3 = 
1 - ~N Ha (Ea) 

1 [E3+ 1 (E3)] 
N½ 8-NQ 

1 E 1 -  ~-~ Ha(3)  

where 

(4.19) 

Q(x) = -{4H3(x)+Hs(x) } . (4.20) 

Now <E1E2>E 3 must by (4.18b) be strictly equal to 
1 

~-~E a. I t  is clearly so to the order of approximation 

I/N½, as was first shown by Cochran & Woolfson 
(1955, § 4.1). Despite the appearance of (4.19), Sayre's 
equation is also obeyed to the order 1/N 3/2 since it may 
be proved tha t  

x+AQ(x)  
= x ,  (4.20a) 

1 - A H  4 (x) 

so tha t  (4-19) reduces to 

1 1 
<E1E2}Ea = ~-~ E 3, to the order /V3/2 . (4.21) 

The result (4.21) would seem to provide a demonstra- 
tion of the general correctness of our statistical 
methods. We would in fact expect tha t  if we carried 
the approximation to terms of order higher than 1/N ~/2, 
we would nevertheless always obtain the result (4.21), 
because our expansions are t ruly asymptotic. 

From (E.14), (E-13) and (E.18) we may also cal- 
2 2 culate the second moment <E1E2}E a of the Sayre 

product EIE~, and hence the variance. We find 

1 1 
1 - ~ - ~  H4(Ea)+ ~ (E~-2) 

CrUz (E1E2) = , (4.22) 
1 -  1 Ha(E3) 

q:2¥ 

- 1 + 1 (E~-2) (4.22a) 

on expanding by the binomial theorem. As may be 
seen from the approximate form (4.22a) and from 

Table 1. Variance of a Sayre product Eh,Eh+h, 
as a function of El, 

Pl,  N =  10 
Eh 0 0.5 1.0 1.5 2.0 2.5 

Variance 0.79 0.82 0.91 1.02 1.18 1.48 

Table 1, the variance remains of the order uni ty  for 
all values of E 3, and indeed increases with E 3. 
This behaviour is quite the contrary of any we have 
found before for the variance. A moment 's  reflection, 
however, will show that  this is just what we should 
expect in the case of Sayre's equation (4.18). When 
Eh is large we may expect tha t  some of the Sayre 
products will be much larger than the average, namely 
those products for which the probability of the t ru th  
of the S.C.Z. sign relation (4-1) is high. When Eh is 
small there will tend to be a smaller number of large 
terms on the right hand side of (4.18a). The reader 
can easily convince himself of the correctness of this 
argument by imagining curves of constant E~E 3 
(e.g. Fig. 5(c)) to be laid on the top (E 1 = 0) and 
bottom (E 1 = 2) halves of Fig. 3. Larger values of 
E~E z are possible in the case of the higher value of E 1. 
(Note, however, tha t  in both cases the most probable 
value of E~E a would still appear to be zero; and this 
would account for the empirical results found by 
Woolfson (1954) and embodied in his Fig. 1.) 

I t  should perhaps be emphasized tha t  the variance 
given in (4.22) is tha t  of a single term in the summa- 
tion involved in Sayre's equation. Strictly, we should 
say from (4.21) and (4.22) tha t  N½Eh,Eh+h, is an 
estimate of Eh with variance N +  (E2-2)  - N. Hence 
the estimate of Eh through the Sayre equation, 
including, say, s terms, 

Eh = N½ ~ Eh,Eh+h 
h'  

has a variance N/s. Ideally s is infinite, so Sayre's 
equation is strictly true. In practice, on certain reason- 
able assumptions (see below, § 5.2), s o= N 2, so tha t  
the variance of the estimate through Sayre's equation 
is ~-- I /N, which is still very small. More precisely, to 
the order 1/N½, the probability of the t ru th  of Sayre's 
equation is (cf. (4.16)) 

P+(E,,) = ½ + ½ tanh {N-½IEh] Z Eh,Eh+h,}, 
h" 

a result which has already been obtained by Cochran 
& Woolfson (1955, equation (4-20)). We have how- 
ever couched the argument in terms of the variance 
of an estimate in order to foreshadow § 5. 

4.5. Probability distribution of Eh, Eh, and Eh+ h, when 
the atom6 are not equal 
The general form of the distribution is given in (C-8). 

The required non-vanishing cumulants kw~ for space 
group P1  are given in (D.11). For comparison with 
the results of other workers we express the results in 
terms of 

2/ 

z~ = Z ~ (Bertaut, 1955a, b) (4.23) 
1=1  

= s~/s'~ 12 (Cochran & Woolfson, 1955) (4-23a) 

instead of the ~ of our equation (C.4). Note tha t  
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~ : z ~ / n  

= z J2 for PT.  
We obtain 

1 
- ~ E 1 -  2 E 2 -  2-E3) P(E l, E2, E3)  - (2g)3/9 exp ( 1 2 ~ 2 1 2 

× {1 +z3E1E2E 3 

g 4 [H4 (El) + cyc.] + ~ H2(E1)H2(E2)H2(E3) 
8 

(4.24) 

z 5 
'2 [HI(E~)HI(E2)H3(E3) + cyc.] 

Z3 za [ H  1 ( E  l)  H I ( E  2) H 5 ( E  3) + c y c .  ] 
8 

+z~ H3(E1)H3(E2)H3(E3) (4.25) 

+ higher order terms} . 

In this equation we have kept the same ordering of 
terms as in (4.5), to which (4.25) reduces when the 
atoms are all made equal, since then 

Z v ~--- 1 / ~ 2  -1 . (4"26) 

The term in z 3 in (4.25) has been given by Hauptman 
& Karle (1953, (3-30)) and by Bertaut (1955b). 

We may now apply the methods of Appendix E 
to obtain various characteristics of the distribution. 
Comparing (4.25) with (E.8), we have 

~ = - ~ ,  floo~ = -z~/S, f12~ = ~ l S ,  
f i l l ,  = ~5/2, ~ 1 5  = ~ a / s ,  ~ = - ~ / 6 .  

(4.27) 
The generalizations of (4-12) and (4.13) are 

<E1}E~, E 3 = 

z 5 
z3E2E z - -~ [Ha(E2)H1 (E3) + H1 (E2)H3(E3)] 

Z3 Z4 
8 [Hs(E2)HI(E3)+HI(E2)Hs(E3)] 

and 

Z 4 
1 - ~ [H a (E2) + H a (E3) ] 

(428) 

1 - ~  [Ha(E2)+Ha(E3)]+z~[1-E~-E~] 
(~,E3 (E~) = 

Z4 
1 -  ~ [H a (E~)+ Ha (E3)] 

(4.29) 

-- I +z~(1-E~-E~) . (4.29a) 

Comparing (4.13a) and (4.29a), the variance decreases 
faster from unity for large values of E9 and E a when 
the atoms are unequal, since in this case 

z 3 > l/N½. (4.30) 

The probability of the truth of the S.C.Z. relation 
(4.1) is now 

P+(E1E2E3) = ½+~- 

Fza[EIE2EaJ+ terms in zs, zaz 4 and z] in (4.25)[ 
------~A . . . . . . .  ~2 . . . . . .  ° 

(4-31) 

To the order z3, this result agrees with the expansion of 
the closed expression obtained by Cochran & Wool/son 
(1955, equation (4.16)). Comparing (4.31) and (4.17), 
and noting (4.30), we see that the efficiency of sign 
relationships is improved when the atoms are unequal, 
a fact already noticed and explained by Cochran 
(1952) and Sayre (1953). 

When the atoms are not equal, Sayre's equation 
(4.18b) is no longer strictly true. However, Cochran & 
Wool/son (1955) have derived a statistical form of 
Sayre's equation 

h" ~3 
Vh ---~ U h '  Uh-kh' --  -- Uh (4.32) 

82 
o r  

E h , E h + h  ,h' -- z3E h (4"33) 

which is true on the average (in the sense of least 
squares) over all h. In our theory the generalization 
of (4.19) is 

Z5 
Z3Z4 H5 (E3) z3E a -- ~ Ha (E3) --g- 

( E I E 2 } E 3  -- , (4"34) 
J . d  

1 - ~ H a ( E a )  

and, although the factorization which led to (4.21) 
in the case of equal atoms is no longer possible, 
(4.34) may be simplified by writing it as 

(E1E2)E3 

za (4H3(E3)--k H5(Ea)} -½ (~s -Za) H3(E3) Z3 [ E3 -- -~ 

1 - -~ H a (E3) 

which, by (4.20) and (4.20a), becomes 

½ ( za -~ )  H3(E3) 
(E1E2)E 3 = z3E3 + (4"35) 

z 4 
1 - ~ Ha(E3) 

To the order z3, this result agrees with Cochran & 
Woolfson's equation (4.33) above, but we see that  
there are correction terms to the latter, particularly 
important for large E3, when z 4 differs appreciably 
from Z5/Z 3. 

For the variance of a Sayre product E1E 2 we find 

1 - ~  Ha(E3)+ z~ (E~- 2) 
2 (E1E~.) = (4.36) (rE 3 

Z4 
1 - ~ Ha(E3) 

37* 
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- 1 +z](E~-2) .  (4.36a) 

Here again the variance is increased as compared 
with (4.22a). 

While our results are more accurate than those of 
Cochran & Woo[fson, it should be noted that theory 
given here takes no account of the physical basis of 
the result (4.32). The value of Cochran & Woolfson's 
approximate method of calculating probabilities is 
that  it brings to the fore the connexion between the 
sign relations and the squared structure (see left- 
hand member of (4-32)). Thus, while it is not so power- 
ful nor indeed so simple as the full statistical theory, 
it is nevertheless invaluable for general discussions 
of the phase problem. 

5. The phase problem 

5"1. Order of a sign determining relation 
Provided that  there is a linear relation between 

their indices, a sign relation or else a sign-determining 
relation* can be found between any set of structure 
factors. We shall denote such a relation by 
R(E,~, Eb2...). The a priori probability of the truth 
of the relation can be found by the methods given 
earlier. I t  should also be possible in every case to find 
an inequality between the structure factors involved 
by the method of Karle & Hauptman (1950). As in 
the cases of the two relations studied in detail in this 
paper, the probability distribution will tail smoothly 
in the bounding contour set by the limiting case of the 
inequality. 

Now it is clear that  not all relations that  can be 
derived are equally powerful or effective. The question 
arises whether there is a simple method of classifica- 
tion. The theory given above suggests a natural 
classification according to the lowest power of l/N½ 
that enters into the probability distribution between 
the structure factors involved in the relation. More 
precisely, we define the order of a relation as the order 

= p + g + r . . .  of the lowest-order non-vanishing 
mixed moment mpq,.., for the structure factors in- 
volved. The leading term in the asymptotic expression 
for the probability will then be of order 1/N ~/'-1. 

The sign-determining formula (3.25) between E,2h 
and Ea (lowest moment ml~.), and the S.C.Z. sign 
relation (4.1) between Eh, E h, and Eh+h" (lowest 
moment mm) will then both be of order 3. An ex- 
ample of a relation of higher order in space group P1 
is the much-discussed formula 2:4 of Hauptman & 
Karle (1953, equation (4.06)) 

S(E~.h) ~-. S{~h, (E~,-1)(E~+h,-1) }. (5.1) 

The formula is based on the probability 

* It is also possible to find relations between magnitudes, 
but these are of no interest for the phase problem. 

1 
P+(E2a)-- ½ + ~ ( E ~ , - 1 ) ( E ~ + h , - 1 ) ,  (5.2) 

which arises from the non-vanishing moment m122. 
The relation (5.1) is thus of order 5. Cochran & Woo[f- 
son (1955) have sho~m that, despite the large number 
of terms in it, (5.1) gives a less reliable indication for 
the sign of E2h than does the single term E ~ - I  
(our equation (3.25)). The reason is that  (5.1) is of a 
much higher order. Furthermore, Cochran (1954) has 
derived the exact relation 

E2h = N½[2(E~-I)-N(E~,,-1)(E~+a.-1)h'] ,  (5.3) 

which supersedes the statistical formula (5.1), and 
which we shall discuss presently. 

The mathematical operation of determining signs in 
reciprocal space by means of sign relations has its 
physical counterpart in various operations in physical 
space. This was first pointed out by Cochran & Woo[f- 
son (1954) and Vand & Pepinsky (1954) soon after the 
appearance of Hauptman & Karle's monograph, and 
in fact was the basis of Cochran's derivation of (5-3). 
Thus R(E2~,Eh) is related to the Patterson, 
-R(Eh, Eh,, Eh,+h) to the squared structure, both of 
which are functions of the second power of the electron 
density. R(~.h , Eh, , Eh,+h ) is related to the squared 
Patterson. If r is the power of the electron density in 
the operation in real space corresponding to the sign 
relation, it thus appears that  the order of the latter 
as defined above is equal to r+  1. The correspondence 
between operations in reciprocal and real space has 
been recently emphasized by Bertaut (1955c). 

We shall now discuss why higher-order relations 
become much less useful as the number of atoms in 
the cell increases. The power or efficiency of a relation 
for sign estimation is given by the deviation of the 
probability from ½, i.e. its bias. This bias will be 
oc 1/Nv/"~-1, where v is the order of the relation. All 
relations will thus be weakened as N increases, the 
more so, the greater v. Alternatively, from the point 
of view of the last paragraph, the higher-order rela- 
tions will tend to fail because the number of peaks in, 
say, the (sharpened) Patterson, or its convolution 
with the structure etc., will increase as the number of 
atoms in the unit cell increases. Thus the determination 
of the signs of E2h in space group P1 depends on spot. 
ring (equation (3.25))or cancelling out (equation (5.3)) 
all peaks in the Patterson except the peaks at ±2rj  
(Cochran, 1954). This will become increasingly difficult 
as the number of peaks increases, since there will be 
more and more 'chance' peaks lying close to the 
neighbourhood of a +2r~ peak. Only if there is a 
sufficiency of data to resolve the peaks completely 
(Cochran, 1954) can we expect the method to succeed. 
Even then, there could always be a chance coincidence 
of one of the cross peaks r~-r~ with a 2rj peak, and 
the likelihood of this increases with N. 
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5.2. The variance of a relation 
The weakness of high-order sign relations when N 

is large may perhaps be understood more clearly by 
considering the variance of one of the terms contribut- 
ing to a sign relation. We shall again consider the 
example of (5.1). 

The joint probability distribution of E.~h, EL, and 
Eh,+h may be very easily found by the methods of 
§ 2 and Appendix C. The first non-vanishing mixed 
moment is m~e 2. (Strictly speaking the lowest-order 
moments are ma00, m040, etc., but these do not in- 
volve all three structure factors.) The next is m322, 
and so on, but we shall confine ourselves to the leading 
terms in the probability theory. From Appendix E 

fl122I~'22 + . • • 
( E ~ )  = iOoo ° + o o flo4oloao + floo4Iooa 

1 
4N3/2 (E~.,- 1) (E~,+h,-- 1) 

1 [ H 4 ( E , ~ , ) + H ~ ( E , , + h , )  ] 1--~ 
(5.4) 

an equation which is the basis of (5.1). In a similar 
way the variance of E2u for fixed values of E h, and 
Eh+h, may be shown to be unity, to the order 1/N½. 

More relevant for our purpose are the mean and 
variance of a single product (E~,- 1) (E~+ h,-  1) = 
H2(Eh,)H~.(E,+h,) contributing to the sum in (5.1). 
These may be found by the method of Appendix E, 
§ b(fi). After a somewhat lengthy calculation we find 

<(E2,,-1)(E~,+h-1)}z~, = E2n/N a/2 (5.5) 

and a variance of unity. Hence one term 

1 ) (Eh,+h -- 1 ) 

provides an estimate of E h with a variance of N 3. 
This result agrees with that  found by Bullough & 
Cruickshank (1955) by algebraic methods. As indicated 
by these authors, if there are p terms in the summation 
(5.1) the variance of this estimate will be reduced 
by a factor lip. Now p will be approximately propor- 
tional to the square of the number of reflexions ob- 
served. On reasonable assumptions, this last number 
will be proportional to the volume of the unit cell and 
hence to the number of atoms in the unit cell, N. Thus 
p oc N 2. Hence the variance of the estimate of E2a 
through the sum (5.1) will be of order N. Now the E's 
are by definition normalized structure factors of 
variance unity, so this vaIiance is in effect enormous 
when N is greater than a very small number. Thus we 
see that the reason from the point of view of statistical 
theory for the failure of Hauptman & Karle's Za is 
that, although it does in fact contain the correct bias, 
this is in practice not revealed, since the number of 
terms in the sum is not enough to outweight the vari- 
ance of each term. The physical counterpart of this 
reasoning is given by Cochran & Woolfson (1954). 

I t  should be noted that  the arguments are based 
upon approximate formulae. From the results of 
previous sections we should expect that  the inclusion 
of terms of higher order than 1/N 312 in the expressions 
for the probability distribution and for the mean and 
variance will have the effect of making the situation 
slightly more favourable than as stated above. When 
the E's involved are large the variance of a single 
product (E~,- 1) (E~+h,-- 1) will be less than unity and 
the efficiency of the estimate correspondingly in- 
creased. As Cochran & Woolfson's (1955) Table 3.1 
shows, there will be some situations in which Z4 does 
give the correct sign, but an examination of their 
arguments will show that this happens essentially 
because Eh is large. 

By a large value of E we mean one which is not too 
small compared with its maximum value, i.e. N½ in 
the case of equal atoms. (The advantage of the U 
notation, of course, is just that  the effective value of 
a structure factor is always kept before one.) Now the 
probability distribution for the normalized structure 
factor E is always approximately Gaussian with 
variance unity (neglecting terms in 1/N and higher): 

(27~)-½ exp (-½E2). (5.6) 

Thus while the probability of finding a particular 
value of E is independent of N, this value will represent 
an increasingly smaller unitary structure factor as N 
increases. 

As a measure of the probability of finding large 
values of E we may examine the distribution of the 
highest value (extreme value) or second highest value, 
and so on, of E. On the basis of previous assumptions 
the number of observations of E (i.e. the number of 
reflexions within the limiting sphere) will be propor- 
tional to N, say equal to ON. Then by Cramgr (1946, 
p. 376) the expected (or mean) value of the largest E 
observed is 

(Eextreme> = (2 log  0~7)½, 0 ~ 1 , (5"7) 

which decreases much more slowly than the square 
root or a power of N (cf. remark of Bu]lough & 
Cruickshank, 1955). Since any sign-determining for- 
mula is of order 1/N½, or higher, as N increases it 
will thus become increasingly rare to find E's  large 
enough to use in, or even to start off, the process of 
sign determination. This is immediately obvious if 
we use unitary structure factors, which also have a 
Gaussian distribution, but with variance 1/N. Then 

<Vex~reme~ = {(2 log ON)/N)½. (5.8) 

I t  is therefore misleading to state, as Hauptman & 
Earle (1954) did, that  because (5.6) is always (ap- 
proximately) obeyed, all structures are equally vulner- 
able to attack by statistical methods. 

5.3. Sign determination by means of a formula having 
strict validity 

One of the important effects of Cochran's (1954) 
introduction of the formula (5.3), having strict 
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validity, into the discussion ranging round Hauptman 
& Karle's statistical formula (5.1) lies perhaps in the 
fact that it focused attention on the desirability of 
selecting the set of structure factors so that they were 
strictly related by a formula derived either by algebra 
or by physical considerations. It was thus seen that 
while the formulae relating E2h, Eh, and Eh+h. , (5"4), 
(5"5) and (5.1) etc., were certainly correct, they were 
nevertheless highly artificial in omitting Eh, which 
would certainly be known in magnitude and could 
thus be taken into account in the process of sign deter- 
mination of E2h. Cochran's formula (5.3) showed how 
to do this rationally. 

From the point of view of probability theory we 
should thus consider the set of structure factors 
E2h , Eh, , Eh+h,, E h. Besides the non-vanishing mixed 
moment mlu20, which led to (5.4) and (5.5), there are 
now lower-order moments m1002 and m0m which must 
be taken into account in calculating the distribution 
P(E2h, Eh,, Eh+h', Eh). The set of terms of order 1/N a/~ 
in the latter would then include, besides tha t  in ml~0 
and those we have already considered in §§ 3 and 4, 
terms arising from the set A~ (see § 2) like 

2 ml002m0m H~ (E2h) H 2 (Eh,) H 2 (Eh+h,) H 4 (Eh) 
2 2 = m~oo2momE2h(Eh,-- 1) 2 (Eh+h,-1)Ha(Eh) (5"9) 

and 
2 2 mloo~mom(E~h-1)E,,,E,,+,,,H~(E,,) . (5.10) 

The term (5.9) is obviously one in which the inten- 
sities of Eh, Eh, and Eh+ h, all play a part  together in 
determining the sign of E2h , and is at least as im- 
portant  as (5.4). Indeed, by analogy with the case of 
§ 4.2, where the probability theory gave Sayre's 
equation exactly, we would conjecture tha t  if we cal- 
culated the conditional mean <(E~,-  1) 2 ( E h , + h - -  1)> a s  
a function of Eu and E2h from the full expression for 
P(E2h, Eh,, Eh,+h, Eh), we would arrive at the result 

2 ( E ~ -  1) 1 
_ _  __ ~ - ~  E2h ,  
N 

corresponding to Cochran's equation (5.3). The labour 
involved in such a proof would be very great and 
hardly seems worth while at  this stage. We have 
already discussed the implications of (5.3) and have 
seen tha t  the use of an accurate formula is still subject 
to limitations tha t  depend on the number of atoms 
present in the cell. 

Cochran (1954) also derived a number of third-order 
formulae having strict validity, which determine signs 
from intensities in higher space groups. We have 
already discussed in § 3-4 the range of application of 
one of these formulae. We shall now discuss a fourth- 
order formula. 

5"4. The fourth order formula in P1 
5 .41 .~A formula having strict validity and useful 

for yielding information about structure factors not 

all of the form E2L was derived by Bullough & Cruick- 
shank (1955)" 

N ( E ~ -  1)Eh ,~h+h' = E2h.h" • (5"11) 

The first non-vanishing moment in the probabili ty 
distribution P(E2e+h, , Eh, Eh,) is m12~, so the formula 
is of the fourth order. I t  corresponds physically to the 
convolution of the structure and the Patterson, i.e. 
to the superposition method. 

Hauptman & Karle (1953, equation (3.31))had 
already derived the probability of Eeh+h' being posi- 
tive, namely 

P+(E2h+h,) = ½+I/4N[E2,+h,](E~-I)E,,, (5.12) 

an expression which we now see is accurate to the 
order 1/N. (The first correction term in this expression 
will be of order 1/N%) They had then used this ex- 
pression to find their sign relation Z:a: 

t 2 h + h ' =  const. 

Bullough & Cruickshank's work thus showed that  the 
formula Z3 has a basis tha t  is strictly and not merely 
statistically valid. However, while it is certainly 
desirable to t ry  to use formulae or relations having 
strict validity, we must remember tha t  the efficacy 
of such a formula is still determined by the order of the 
formula as defined above. The formula (5-13) expresses 
the desired structure factor as a sum of contributions 
involving the related structure factors. From the ex- 
perience of § 5.2 it will be clear tha t  the formula will 
be useful only if the number of contributions is such 
as to outweigh the variance of one of them. The 
variance of a single term, we recall, is related to the 
order of the formula. 

In this case it is easy to show that  the variance of 
the product H2(Eh)HI(E,, ) = ( E ~ - I ) E  a, is of the 
form 

2+ 1/N (function of E~h+h, ) + . . . .  

Hence the variance of N ( E ~ - I ) E h , ,  which is an 
estimate of E2h+h' is 

2N~+N (function of E2h+h') • (5"14) 

For small or moderate values of Eeh+h', the dominant 
terms is 2N 2, so that ,  to this approximation our result 
agrees with tha t  of Bullough & Cruickshank. (Cf. 
§ 3"3, for another instance where the variance as 
calculated correctly from the statistical theory con- 
tains correction terms to that  found by the simple 
algebraic methods.) 

On our previous assumptions, the number of terms 
in the summation (5.13) will be of the order N 2, 
so tha t  the variance of the estimate of E2h+h' through 
(5"11) or (5.13) will generally be of the order 2. 0n ly  
for large values of E2h+h, can we expect the variance 
to be much less than this, but these will occur only 
rarely, as discussed in § 5.2; our former remarks will 
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apply and we can ignore large values in a general 
discussion. I~ow for an estimate to be effective for 
sign determination its variance must be small com- 
pared with uni ty  (since (E  2) = 1), and we see tha t  
this is not the case here. Hence, although equation 
(5.11) is a formula having strict validity like Sayre's 
equation (4.18), and can ideally be used in the same 
way in the process of sign determination, it must in 
practice be much less effective. From our point of 
view the reason for this is tha t  (5.11) is a higher-order 
formula. 

Despite this, it should be emphasized tha t  the 
variance of an estimate of E2h+h, through 273 or 
(5.11) is (approximately) independent of N. We should 
thus not expect its efficiency to drop as N increases, 
as does tha t  of the formula Z: 4 (equation (5.1)). In  
this connexion, it should be noted tha t  Za played an 
important  part  in the successful solution of the struc- 
ture of p,p'-dimethoxybenzophenone by statistical 
methods (Karle et al., 1957). This is a fairly complex 
structure without any atoms heavier than the rest, 
and its solution would be creditable by any method. 
However, without further investigation into the distri- 
bution of the magnitudes of the structure factors in 
this particular case and an examination of the Patter- 
son, it cannot be concluded that  the sign determination 
will also be successful for all other comparable struc- 
tures. Indeed, we should expect the reverse to be true; 
i.e. tha t  only occasionally (statistically!) will sign 
determination by direct methods of this kind be 
successful for complex structures with all atoms equal. 
But  only a good deal of experience can show just how 
useful Z a will turn  out to be in practice. 

5.42.--Some further points need to be made con- 
cerning the order in which the formulae available for 
sign determination are to be used in the actual process 
of sign determination. In P1, the only formula avail- 
able for determining signs from intensities is either 
(3.25) with probabili ty calculable from (3.23), or else 
the complete equation (5"3). The next step would be 
either (i) to use the S.C.Z. relations (4.1) to extend 
the signs available, or else (ii) to apply formula (5.11). 
Cochran & Woolfson (1955, § 4.5) have suggested by 
an example tha t  higher probabilities for P+(E2h+,,,) 
may be found by following the first path  rather 
than the second. This does not seem to be necessarily 
always the case, but  it does raise the question of which 
path  is to be preferred, and we shall now consider what 
our theory has to say about this. 

Although the set of structure factors E2h+h', Eh 
and Eh, are related by the equality (5.11), there is no 
reason why we should not at the same time consider 
E2h as well. The formula relating the four structure 
factors will now only have statistical validity, but  its 
power for sign determination will still be of the same 
order, if not greater than tha t  of (5.11). The non- 
vanishing mixed moments of the set E2h+h', Eh, E,,, 
and E2h are m~0 n, m020~, m12~0, and the expression for 

P(E2h+h', Eh, Eh', E2h) will contain among its terms 
of order I/N, not only the term 

~1210 1! 2! 1! O! E2"+h'(E2h--1)Eh" (5"15) 

corresponding to (5.12), but also the term 

21011 ~o2oI 
1! O! 1! 1! O! 2! O! 1! E2h+h'(E2h--1)Eh'(E2h--]) ' (5.16) 

which arises from the set ½A~ in equation (2.17). 
Put t ing in values for the mixed moments, we find to 
the order 1/N 

P(E2h+,,, Eh, Eh,, E2h) = (2~) -2 

[-- ½ (E2h+h' + cyc.)] x exp 2 

x l+2-N- ~ ( E ~ - I ) E 2 h +  E2h+h'Eh'E2h 

1 
+ - -  E2h, h, (E~, - 1 )E h, 

2N 

1 1 
(Eeh-- 1) -- ~-~ [H4(E ) + cyc.] ÷ ~-~ E2h+h' (E2h-- 1)Eh, 2 

' 5 + ~ H2(E2h-h')H2(Eh')H2(E2h) + H~(Eh)H2(E2h) 

terms in 1/N a/2 etc. / . (5.17) + 

Let us consider the sign of Eh, as known. Wb.en 
the sign of/~2h is unknown, the second (non-constant) 
term in (5.17) corresponding to the S.C.Z. relation is 
of no use, and we have approximately 

(5.18) 

= S{~h,(E2-1)E,,,E22h I . (5.19) 

The two terms on the right-hand side of (5.18) cor- 
respond to the paths (i) and (ii) above, but  we now 
see tha t  there is really no question of preference of 
one above the other. Path  (ii) based on the fourth- 
order formula, and path  (i), which is equivalent to 
using two third-order formulae in succession, are of 
equal power (order 1/N) and must  be used together 
as indicated by (5.19). I t  is not correct to say, as did 
Cochran & Woolfson (1955, § 4.5), tha t  the sign- 
determining formula (5.13) of path  (ii) is not really 
independent of the lower-order formulae (3.25) and 
(4.1). The correct point to make is tha t  (5.13) is not 
any more powerful than the latter two formulae used 
in succession, and indeed tha t  the lat ter  path  makes 
use of the known magnitude of Eeh. When tEeb] > 1, 
the sign of the contribution from paths (i) and (ii) 
separately will agree with tha t  found from (5.19). 
When [E.~hl < l, i.e. Eeh is weaker than the average 
structure factor, the two paths (i) and (ii) would give 
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discordant results, and hence particular care must be 
taken to use the full formula (5.19) in which the two 
paths are essentially given their correct weighting. 

The result (5-19) appears to be new and to supersede 
both Hauptman & Karle's formula (5.13) and Cochran 
& Woolfson's prescription when the sign of E,, h is not 
to be taken into consideration. With this proviso, it 
is formally correct. However, as soon as any signs of 
the E2h become available, they must be taken into 
account in determining the sign of E2h+h' by means of 
the S.C.Z. relation between E2h+h', Eh, and Eeh. From 
Bertaut 's  equation (3.22) and (5.17), the probability 
tha t  E2h+h, is positive or negative is 

P:t: (E2h+h') = ½±½ 

1 1 
~--~ ]Eg h+h'] (E~,- 1)Eh,E~h + ~ IE2h+h, lEh,E2h 

1 1 
1 + ~ E2h (E~-  1) + terms in _~ 

- ( 5 . ~ o )  

When E2h is ignored, we arrive at (5-19). When it is 
not, (5-19) must be replaced by 

S(E2h+h') 

S / Z [terms in square brackets in (5.20)]~. (5.21) 
t2h, h, h' 

In  practice, however, the S.C.Z. relation, being of 
order 1 IN½, will dominate in the estimate of the sign 
E~h+h,. This is clearly revealed when the denominator 
of (5.20) is expanded by the binomial theorem, and 
terms higher than order 1IN are omitted: 

-P-l-(-~2h-]-h') : ½-~-½ I ~ I ' ~ 2 h - l - h ' [ ( E h - - 1 ) - ~ h " ~ h  

-~ ~ ]E2h+h, ]Eh,E2h 1 -- ~ -~  E2h (E2h -- 1) 

= ½+ ½N-½ ]E2h+h'[Eh'E2h • 

This is the result we would get from the S.C.Z. relation 
alone. The contribution from the terms corresponding 
to (5-19) in (5.21) is thus negligible compared to that  
of the S.C.Z. terms. 

5-43.--In higher space groups the non-vanishing 
moment mn~ correlates (Bertaut, 1956b) structure 
factors of the same class, i.e. those undergoing the 
same change in sign when the origin is changed. Thus 
in space group P21/a, a relation will be obtained which 
enables one to compare the signs of two structure 
factors Eh,rr and Eh,,rr,, where h' and h" differ by 
an even integer, 2h, say, and l' and l" differ by 21 
(see Hauptman & Karle, 1953, Table 11, Case 5). 
The statistical relation analogous to (5.12) correlates 
Eh,k,z, and Eh,,rr, through the magnitude IE2h,.e,2z]. 
Since k is a free index, the relation as used in practice 
contains more than one term. Likewise, the signs of 

Eh, k, r and Ei~,r,r are correlated through the magni- 
tude [Ehk~] where k = ½(k ' -k") ,  and h and 1 are free 
indices. 

Bertaut (1956a, b) has made great use of the fourth- 
order relation in higher space groups, involving the 
moment mne, to solve a number of structures. I t  seems 
tha t  the solutions could equally well have been ob- 
tained by using first the analogue of (3.25) and then 
the S.C.Z. relations. 

To facilitate the derivation of the relation in higher 
space groups, Bertaut  (1955c) has developed a most 
ingenious 'structure-factor algebra', and has published 
(Bertaut & Dulac, 1955) tables of relations so ob- 
tained. The method is exactly ~nalogous to calcula- 
tion of the sets of structure factors for which the 
moment mn~ does not vanish, but  its advantage is 
that  these sets are given easily and automatically. 
The structure-factor algebra is useful for other pur- 
poses and may also be used to generate higher-order 
relations, but Bertaut  has not done this. In view of 
what we have already said concerning the weakness 
of relations of order higher than the fourth, it would 
not, however, seem worth while to do this. 

5.5. Formulae available for sign determination in P1 
In their latest approach to the phase problem, 

Hauptman & Karle (1957) stress the importance of 
formulae having strict validity. The discussion in 
§ 5-42 should serve to show that  there is no particular 
advantage attached to such formulae. The desirable 
thing is to group all useful formulae of the same order, 
whether derived algebraically or else arising from 
successive application of lower-order formulae, and 
~'h~ther they are strict\y or ~ul~ st~tisti¢~ ~hd.  

In P1, the only third-order formulae available are 
(3.25) and (4.18). The fourth-order formulae available, 
apart  from (5.19) based on the moment rune, will be 
those based on the moments mini  and m~. The first 
involves four structure factors Ehi, connected by the 
condition 

h l + h e + h a ~ h  4 -- 0 ,  

and it is easy to show (Simersk£, 1956) that  there is 
in fact an exact relation between them, 

.~ ~ ~ hl+h2+h3=h4 l 
hl~Wh2J_~h3 = N Eh4 • 

The use of this formula will require knowledge of three 
of the signs of the E's involved, and it will clearly 
not be as useful as the S.C.Z. relation. We shall not 
discuss it here (see Simersk£ (1956), who has tested 
the relation on a known structure). The moment mla 
relates the structure factors E3h and Eh. The relation 
is one between signs since only odd powers of Eah 
and Eh will be involved. The correlation is of order 
1/N and is thus weaker than that  between E2h and Eh 
(order l/N½). We shall not discuss it any further. 
(See Cochran & Woolfson, 1955, § 3.5.) 
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From our general remarks it will be clear that the 
fifth-order formulae will be too weak to afford reliable 
sign indications. Hauptman & Karle (1957) have 
listed a number of these and have expressed the hope 
that standards of significance may be set up for the 
reliability of means computed from the formulae, and 
suitable laws of rejection then established• The meth- 
ods of the present paper may be used to write down 
probability distributions corresponding to all the for- 
mulae listed, and hence to estimate their reliability• 
We have not done this since we do not believe that 
any of the higher-order formulae will turn out to be 
useful in practice for anything but the very simplest 
structures• 

Indeed it seems to us that the most useful approach 
to the phase problem is to concentrate on the low- 
(third-)order formulae, and to try to discover some 
systematic method of application• The first attempt 
in this direction was the method of Cochran & Douglas 
(1955), which sets out to find the signs of a limited 
set of structure factors so that the S.C.Z. relations 
are generally obeyed• More recent attempts in the 
same direction are those of Woolfson (1957) and Grant, 
Howells & Rogers (1957). It seems likely that this 
approach will eventually extend and return to Sayre's 
(1952) original method of finding a set of signs for all 
the structure factors that obey the complete Sayre 
equation (4.18a). The generalization of this kind of 
approach to finding a set of signs obeying the fourth- 
order formula (5.11) might also repay some study. 

Thc work was stimulated by a colloquium given by 
Dr E. F. Bertaut in Cambridge in April 1956. I t  was 
done in the summer of 1956 at the Cavendish Labora- 
tory, and I am grateful to Dr M. F. Perutz for his 
hospitality. I would also like to thank Dr W. Cochran 
for many helpful discussions during that  time and for 
his general interest, and Dr H. E. Daniels for a general 
discussion of probability theory. 

I wish to record the help of M_rs K. Cratchley and 
Mr A. Page with the computations and drawings. 

APPENDIX A 

Generating functions, m o m e n t s  and cumulants  

We shall here briefly summarize the fundamental 
theorems of probability theory concerning generating 
functions used in the text. Full treatments are given 
in such standard works as Kendall (1943) and Cram6r 
(1946). 

Let f ( x )  be a probability distribution function of the 
random variable x, for simplicity supposed to have 
the mean value zero, and where, as usual, 

f_~f(x) d x = l .  

The moments mr are given by 

i 
c e  

m r  ~ -  x r f  (X) d z  (A. 1) 
- - 0 0  

and it is convenient to introduce the moment generat- 
ing function (m.g.f.) 

_~(u) - do (exp [ux]) 

S = exp [ u x ] f ( x ) d x  
--CO 

U 2 U 3 

-= 1 + u m  1 ÷ ~ .  m~. + ~.  m 3 + . . . .  (A.2) 

Here the symbol do stands for the operation of finding 
the (mathematical) expectation or mean value of a 
function. Thus the mean value of a function ~(x) of 
the random variable x will be written 

S do~f(x) -- y~ (x ) f ( x )dx  , (A.3) 
--CO 

The Fourier transform of f(x), 

S C(u) - d ° (exp [iux]) = exp [ i u x ] f ( x ) d x ,  (A.4) 
--CO 

is known in probability theory as the characteristic 
function (c.f.) and may also be used to generate the 
moments, since 

• ( i u ) ~  
C(u)  = M ( i u )  = l + ~ u m l + - - - ~ . -  " m 2 +  . . . .  (A.5) 

The great utility of introducing the m.g.f, or e.f. 
lies in the ease with which the probability distribution 
of a sum of random variables may be calculated. If 
we have two random variables x 1 and x2, with distribu- 
tions f ( x l )  and g(x2) , the distribution of their sum 
X = x ~ + x  2 is given by 

/* CO 

Then, by the convolution theorem, well known to 
crystallographers, the c.f. (Fourier transform) of P ( X ) ,  
which we shall denote by C x  (u), is simply the product 
of the c.f.'s of f ( x )  and g(x): 

C z ( u )  = Cx,(u)Cz~.(u).  (A.7) 

Then P ( X )  is obtained simply by taking the Fourier 
transform of (A.7): 

P ( X )  = ~ Cx(u) exp [ - i u X ] d u .  (A.8) 
--CO 

In the case where the two random variables have 
the same probability distribution f(x), 

C'~(u) = [C~(u ) ] * .  

The last result is easily generalized to the case of the 
sum of t random variables: 

X = x l + x ~ . + . . .  + x ~ .  (A'9) 
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Here 

where 

P ( X )  = ~ Cx(u) exp [ - i u X ] d u  , (A.10) 

Ox(u) = [C~(u)] t • (A.11) 

Note t h a t  there are exact ly  analogous results for 
the  m.g.f. M(u),  and in practice it is more convenient 
to work with the la t ter  to avoid having to use the 
complex i. 

When X is a linear combination, ra ther  than  a sum, 
of random variables 

X -- aixi+a~x~.+.. .  +a, xt (A.12) 

then  (A.7) is easily generalized to 

Cx(u) = Cx~(alu)...Czt(a~u) , (A.13) 

or, when all the  ai are equal to a, and all the x's have  
the  same distribution, 

Cx(u) = [Cx(aU)] t . (A.14) 

Now while the moments  of a distribution are a set 

of parameters which are useful for measuring its 
properties, and for specifying it, they are not, however, 
the only set of parameters for this purpose, or even the 
best set. Another series of parameters, the so-called 
cumulants, have properties which are more useful 
from the theoretical standpoint. 

Formally the cumulants /cr are defined by the ex- 
pansion of the cumulant generating function (c.g.f.) 
K ( u )  

K(u)  = log i ( u )  

kx u + k 2 ~.t u3 
= +/c3~+. . . ,  

or al ternat ively,  

K(iu)  = log C(u) 
(iu)~ 

= k~(iu) +k2 ~ + . . . .  

(A.15) 

(A.16) 

Note t h a t  i t  is sometimes more convenient to write 
the same equations as 

o r  
M(u)  = exp [K(u)] 

O(u) = exp [K(iu)]. (A.17) 

The relations between cumulants  and moments  m a y  
be found by  equat ing coefficients of powers of u in 
the expansions 

7£ 2 U 3 ( U2 ) 
k l u + k ~ ! + k 3 ~ . + . . .  = l o g  l + m l u + m 2 - ~ . . + . . .  , 

(A.18) 
and  the  results are widely tabula ted .  

I n  terms of moments  about  the mean mr, the 
eumulants  kr are 

k I = m 1 = m e a n ,  
/c 2 -- m 2 = va r i ance ,  
k 3 = m 3 , 

k 4 = m4-3m~ ,  
k 5 = m 5-10m2m 3 . (A-19) 

The coefficients of skewness and excess, which are 
measures of the depar ture  of a distribution from the 
normal,  are k3/k~/2 and k4/k ~ respectively. 

The impor tan t  p roper ty  of cumulants  for our pur- 
pose is tha t ,  in tak ing  the sum of a set of r andom 
variables,  the cumulants  of the individual  variables 
are additive. This introduces a great  simplification in 
the  mathemat ica l  manipulat ions.  For  it follows from 
(A.7) t h a t  

Kx(u)  = log Cx(u) 
= log C~l(u ) +log Cx2(u) 

= Kxl(u)+Kx2(U), (A.20) 

and hence the coefficients in the  expansion of the right- 
hand  side of this equation are also additive. 

We can obtain the characterist ic function for the  
distr ibution of the sum X of t identical r andom 
variables (A.9) by using (A.17), 

Cx(u) = exp [Kx(iu)] = exp [tK~(iu)], (A-21) 

where K~(u) is the c.g.f, of a single random variable.  
When  the random variables are not  identical, we shall 
have instead 

t 
Cx(u) = exp V .~,Kzi(u) • (A.22) 

Li=I ] 

A P P E N D I X  B 

Generating functions and cumulants  of 
mult ivariate  distr ibut ions  

We shall i l lustrate the definitions required for the  joint 
probabil i ty distribution of a number  of random variables 
by  the  bivar ia te  case. The extension to more t h a n  two 
random variables is obvious. I f  f (x ,  y) is the joint 
probabi l i ty  distr ibution of the  random variables x 
and y, the mixed moments  are defined by  

S mrs = (x, y) d x d y .  (B ' I )  

Note  t ha t  the first suffix in mr~ always refers to the  

first r andom variable considered, x, and the second 
to y. This conventional  nota t ion will be followed for 
mixed cumulants  as well. 

In  the various generat ing functions, it is now neces- 
sary  to introduce a carrying variable ui for each ran- 
dom variable. Thus, for instance, the characterist ic 
function is now 

C(ul ' u2 ) = do exp [i(ulx+u2y)] 

f f  = exp [i(ulx+u2Y)]f(x, y )dxdy (B-2) 
• --oo --oo 
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= 1 + i (mloul+molU~.  ) 

i s 
+ ~ (m,o~+2~l~u~+mosu~) 

i s 
+ ~ .  ( m ~ o ~  + . . .  ) +  . . . .  (B.3) 

The c.g.f, will be related to the m.g.f, by  the equations : 

K ( u  1, ug) = log M ( u  D us) (B.4) 
or  

exp [ K ( u l ,  us) ] = M ( u l ,  us) , (B.5) 

and the mixed cumulants  to the mixed moments  by  

kl0 ]%1 ]~20 2j_ k l l  k02 U22 
1! 0! u1+ 0 ' - ' ~ . ' . % + ~  u l  ' 1Ti~'.'.u~Us+ o'-'~. 

]Crs 
+ " "  +r '~s ' .  u~u~ + . . . 

/ l O  / 0 1  / 2 0  ) 
= log l + l ~ . U l + o t ~ . u ~ + 2 ~ . u ~ +  . . . .  (B.6) 

Ins tead  of expanding the r ight -hand side of (B.6), 
the relat ion between cumulants  and moments  can 
most  easily be derived by a process due to Kenda l l  
(1943), which considerably simplifies the labour. This 
method  has been used by  Cook (1951) to derive rela- 
tions for the bivar ia te  case, and we reproduce some 
of her  results tha t  we shall  need here. When  the origin 
is at  the mean  (k~o = k01 - -  0 ) :  

Order 

2 k20 : m2o 
]~11 = m l l  

3 /Czo = m30 
]Q1 = ms1 

4 k40 = m4o--3m~o 
]ca1 = max-- 3msomll 
]css= ms s -  mg.omos-- 2m~1 

5 ks0 = ms0-- 10m3oms0 
lc41 = m a ~ - 4 m 3 o m n - 6 m s ~ m s o  
]c32 = mas-- maomos-- 6 m s l m  n -  3mlsmso . (B-7) 

The relations are symmetr ica l  in the suffixes, and are 
the generalizations of relations (A. 19), from which they  
are in fact derived. In  the applicat ion to statist ical  
problems in crystal lography,  m a n y  of the moments  on 
the r ight -hand side are zero (e.g. for a random distri- 
but ion of atoms mao = 0, and for space group P1  
mll = 0). 

A search of the stat ist ical  l i terature has not revealed 
any  tables of relations for the t r ivar ia te  case, but  it is 
easy to derive those we need from (B.7) by  using 
Kendal l ' s  (1943) method.  The results not a l ready 
contained in (B.7) (one can add as m a n y  zero suffixes 
as required to any  of the relations) are: 

Order 

3 k l l  I = m l l  1 

4 k211 = m211-m20om011-2m~1om101 

5 kal I = m311-3m21omlo1-m3oomml  
- 3m111m200- 3msolmn0 

]C221 = m s 2 1 - m s o o m o s l - i m l l l m l l O  
- -2mlsomlol - -2mslomon--mosom2o 1 . (B-8) 

These relations can be checked by  seeing whether  
they  reduce to (B.7) or (A.19) on amalgamat ing  suf- 
fixes. We have wri t ten out the relations in full  for, 
a l though m a n y  of the moments  will vanish  when the 
atoms are assumed to roam uniformly through the 
uni t  cell, they  will not necessarily do so for other 
distr ibutions tha t  one might  use (e.g. when restrictions 
are placed on the atomic positions, or the atomic 
positions are assumed to be correlated in some way). 

A P P E N D I X  C 

C a s e  o f  u n e q u a l  a t o m s  

The point  of departure for deriving the joint  prob- 
abi l i ty  distr ibut ion of a set of s tructure factors when 
the atoms in the cell are not  all equal, but  have the 
same probabi l i ty  distr ibution,  is equat ion (2.3) of the 
text.  

~ / ( U l ,  . . . ,  Urn) 
= M(~olu l ,  . . . ,  qg~um) . . .M(qgtu l ,  . . . ,  q~tUm). (C'I) 

Int roducing the mul t ivar ia te  cumulan t  generat ing 
functions, as in (2-7), 

YC= log ~ ' ,  

K = log M ,  (C.2) 

where K ( u D . . . ,  urn) is given by  equat ion (2-8); it  
then  follows from (C'I) tha t  

t 
(U 1, . . . ,  Urn) : . ~  .K(qg./Ul, . . . ,  q)jUm) • (C'3) 

j = l  
Here 

K (q~ul , .  . . , qDjUm) 

]C200 2 2 2 2 3 3 _ ...  ~ l  u l  ko2o... ~ j  u2 k300 ... ~~Ul  
- 2 ! 0 ! 0 !  . . . t 0 Y .  2 ! 0 !  . . . + 3 ! 0 ! 0 !  . . . + " "  

= ~. (terms in p + q + r  . . . .  2 ) + . . .  

+ qg~ (terms in p + q + r . . .  = ~) + . . . .  
Hence 

Yf(Ul  . . . . .  urn) 

= ~ (terms in p + q + r . . .  = 2 ) + . . .  

+ ~0~ (terms in p + q + r  . . . .  ~,)+ . . . .  (C.4) 

Since the atoms are unequal  it is not possible to re-  
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write this  expression directly in terms of s tandardized 
cumulants ,  as in equat ion (2.12). The second-order 
term does, however, s implify to 

1.^ 2--.X^ 2 . 
2 ' tbl- i-  2 ' t t 2 - ~ - . . .  

since 

and 
k200 . . "  = m 2 o o . . "  = <~2>  = 

t 

n2q~ = 1. 

To deal with the higher terms we introduce the nota- 
t ion 

t 

~; = 2 ~ .  (c.4) 

The moment-generat ing funct ion is then  

~ ( % ,  . . . ,  u~) = exp [5C(u~, . . . ,  urn)] 
oo 

--- exp [ ~ ( u ~ + % + . .  ~ ~ 2 . ) + 2  ~L~] ,  (C.6) 

where (cf. (2.15)) 

]Cpqr L~ = S ~-;~ ~,u~u~... (e.5) 
P + q +  . . . .  v ~ ! . . . . .  1 2 

the  sum S being taken  over all part i t ions of v. Note 
tha t  the k's in this expression are uns tandardized 
cumulants  and tha t  

L~ = n"/2A~. (C.6) 

Proceeding now exact ly  as in § 2, we obtain 

e ~  [ -  ½ ( ~ + ~  +. . . ) ]m ' (~ ,  . . . ,  ~ )  
= 1  

+~aLa 

~ 3 L 3  
+ ~ L ~ + ½  2 2 

+ ~5L5 + ~a~aL3L~ + ~ ~ L  3 
÷ ,  ° .  (C.7) 

where we have  kept  the same ordering of terms as 
in (2.16). 

The inversion of (C.7) follows just  as described in 
the text  in § 2. We obtain 

1 
P(Ex, . . . ,Em)  (2~)m] 2 exp [ - ½ ( E ~ + E ~ + . . .  +E~)]  

k2~0... H~(E~)H~(E2) + 
+2! Y.' bS... " "  

+ 1 ! 1 ! 1------~ k m  HI(E1)Hz(E~)H~(Ea)+ . . . .  1 

Ha(E1) + . . .  
k~oo. .. 

+ ~  4 ! 0 ! 0 !  . . .  

k 3 1 0 . , .  Ha(EI)H~(E2) + . . .  ] 
÷ 3 ! 1 ! 0 !  . . .  

+ e t c . } .  (C.8) 

A P P E N D I X  D 

C a l c u l a t i o n  of m i x e d  m o m e n t s  a n d  c u m u l a n t s  

Some of the required results are a l ready tabula ted  in 
H a u p t m a n  & Karle ' s  monograph (1953). A good 
general method is tha t  due to Ber tau t  (1955a, b), in 
which the tr igonometric structure factor is expressed 
as the linear sum over the equivalent  points of the 
space group. For P1,  one x~Tites 

~(h) = 2 cos 2~zh.r = S ( h ) + S - l ( h ) ,  (D.1) 
where 

S(h) = exp (2~rih. r ) .  (D.2) 

(i) Then to calculate, say, m14 for the pair  of struc- 
ture factors E2h -- Eh~ and Eh -- Eh~ (§ 3) one writes 

~ i ~  = (&~+z~:)(&~+s~:)~  
= (ShI+Sg~)(S~+4S~+6+4Sg:+Sg:)  
__ 4 S h l S 2 h 2 +  - 1  - 2  - -  4Sh~ S h 2  + ,  • * 

= 4 + 4 + . . .  , (D.3) 
since 

because 

Then 

Sh~ZL. -~ -2 = S{11 S h 2  = 1 

h z + 2 h  2 = 0 .  (D-4)  

m14 = <~h1~2>  = 4 + 4  = 8 ,  ( D ' 5 )  

since the averages of the other terms in (D.3) are zero 
when the atoms are uniformly dis t r ibuted throughout  
the cell. 

In  a similar  way we find tha t  the only non-vanishing 
moments  are 

m02 = m20 = 2, m~2 = 2, m 4 0  = m 0 4  : 6, 
m 2 2 = 4 ,  ma2 = 6, m14= 8 .  (D-6) 

From these we obtain the cumulants  kpq by  (B-7): 

]%2 ---- k 2 o  ---- 2, k12 = 2, k4o = ko4 = - 6 ,  

k 2 2 = 0 ,  k 3 2 = - 6 ,  k 1 4 = - 1 6 .  (D-7) 

F ina l ly  the s tandardized cumulan ts  ;L m are obtained 
by dividing the lat ter  by (~/ko2) p+q = 2(P+q)/2: 

202 = ~2o = 1, 212 = 1/2½, 2o4 = 24o = - 3 / 2 ,  
222= 0, 232 = -3/23/2 , 214= - 8 / 2  a/2. (D'8) 

We have wri t ten the ~pq in terms of powers of 1/2½ 
so ~ha~ ~he latter may be easily incorporated into ~he 
powers of 1/t½ tha t  occur in the expression (3-3) to 
give terms in 1/N½. 

(ii) In  § 4 we shall require the mixed moments  and 
cumulants  for the evaluat ion of P(E, , ,Ew,  E,,+h,) 
for P1. The moments  

mpqr = <~(hz)P~(h2)q~(h3)r>, (D'9) 

subject to the condition 

h l + h 2 + h  3 = 0 ,  (D.10) 
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are found as in the example (D.3)-(D.5) above. 
The cumulants kpq r a r e  then found by using (B.8) 
above, and are finally standardized by dividing by 
2 (p+q+r)/2. The results (which are, of course, sym- 
metrical in h~, h e and ha) for the non-vanishing 
moments are : 

pqr 200 111 400 220 113 

mm~ 2 2 6 4 6 

'/.~ kpq r 2 2 - 6 0 - 6 

2p~ 1 1/2½ --3/2 0 - 3 / 2  ~/~ 
(D.11) 

A P P E N D I X  E 

C a l c u l a t i o n  of  t h e  c h a r a c t e r i s t i c s  of  a c o n d i t i o n a l  
p r o b a b i l i t y  d i s t r i b u t i o n  

(a) Bivar ia te  dis tr ibut ion 

The method we shall use is due to Wicksell (1917), 
in which the moments of the distribution (3.13) are 
evaluated in the form (3.17). We require to calculate 

I~  = x ~ Oi+~q~(x' y) dx  (E.1) 
_ ~  Ox i 8x i ' 

where 
1 

of(x, y) = cf(x)cf(y) = ~-~exp ( - ½ x e - ½ y ~ )  . (E.2) 

It is easy to show by integration by parts of (E.I) 
that 

0 s! d~I~o i) when i < s  
d y e '  ( 1)i(s_i)--~ " - , 

, when i > s .  

:Furthermore, 

I~oo = q~ (y) x~q~ (x) dx  

~ 1 . 3 . 5 . . .  ( 2 m - 1 ) ~ ( y ) ,  

0 

(E.3) 

when s = 2m,  

when s = 2 m + l .  

(E.4) 

From (E.3) and (E.4) we obtain, by using (1.16) and 
(1.17), 

IO o = ~ ( y ) ,  

I°~ = (-1)~H~(y)cf (y)  , 

{ ~ = o ,  

I ~  ---- (-- 1)~+lH~(y)cf(y) , 

[ I~)~ = ( -  1)/H~(y)cf(y) ,  
1~  = o ,  

I~i = 2 ( -  1)iH~(y)cf(y), 

{ Io~: = o ,  
I ~  = 3 ( - 1)i+lH~ (y) ~ (y ) ,  

~ = 0 ,  

I~j = 6 ( -  1)i+~H~(y)q~(y). 

(E.5) 

Hence every term in the numerator and denominator 
of (3.17) contains the factor ~(y), which thus cancels 

out completely, leaving simple expressions involving 
products of fli~ and Hermite polynomials H~. As an 
example we shall write down the expression for the 
mean (Eeh}zh .  :From (3.17), 

1 1 1 ioo + floa loa + fl~ei~ ~ 1 -l- +flo~Io~ , f l , 3 I i a + . . .  (E.6) 
(~)~ -- 0 0 0 Ioo ÷ flo31o3 ÷ flo4 lo4 + . . .  

where we identify Ee~ (= E~) with x and E~ ( - E ~ )  
with y. Substi tut ing from (E.5) into (E.6), and in- 
cluding only those fl~. tha t  do not vanish in the ex- 
pression (3.4) for P(E~,  E~), we have 

(E~}z~ = - f lmHe (E~.) - fl~a H a (E~) - f l~H~ (Ee) 
1 +fl0~H~(E~) 

The values of flu are obtained by comparing (3.4) 
with (3.14), and we finally obtain 

(E1}E ~ = 

1 H2(E~)_~_~/2 [~H4(E2)÷~6H6(E2)] 
2N½ 

1 
1 - ~ H4(E2) 

(E'7) 

(b ) Tr ivar ia te  dis tr ibut ion 

When three random variables x, y, z are involved, 
as in § 4 where they  are E~, E w and Eh+w respec- 
tively, the probabili ty distribution is of the form 
(see (4.5)) 

2'(x, y, z) 

= qD(x, y, z ) +  . ~  fl~j~ q~(x, y, z) 
i+j+k > 3 ~x i Oyj ~z 7~ 

= q ~ ( x , y , z ) [ l ÷  27 (-1) i+]+kfl~j~H~(x)H~(y)H~(z)] ,  
i+j+k >_ 3 (E'8) 

where 

q)(x, y, z) = q~(x)q)(y)q)(z) 

= (2z) -3/2 exp [ - ½ ( x ~ + y 2 + z ~ ) ] .  (E.9) 

(i) The s TM moment of x as a function of y and z 
will then be given by 

I800+ 27 fl~kli~k 
, i+j+k >_ 3 , (E" 10) 

s,(x), ,~ = IOoo + 27 p~j,I~°jk 
i+j+k > 3 

where 

i 
OO 

!i~k _ xS Oi+J+%f (x, y, z) 
- ~  8x ~eyjezk dx  . (E. 11) 

Comparing (E- I )and  (E.11), and using equation (F.2), 
it is obvious tha t  

I~j~ = ( -1 )kH~(z )X~j ,  (E.12)  

where the I~j are given in (E-5). 
The flij~ are obtained by comparing (E.8) with the 

particular probability distribution to be considered, 
namely (4.5) : 
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~111 = --1/~½, ~ 4 0 0 = - 1 / 8 N ,  ~ =  1 / 2 N ,  o ! (E.13) 
fln~ = 1/2NaIl, fln~ = 1/8NS/~, flass = - 1 / 6 N S / ' .  ! 

The ca lcula t ion  of the  m e a n  (x)v, ,  is t h e n  s t ra ight -  
forward .  To ob ta in  the  var iance ,  the  second m o m e n t  
,u~(x)v,, is f irst  ca lcula ted  f rom (E-10), and  t hen  
equa t ion  (3.8) is used. The  f inal  resul ts  are g iven in 
equa t ions  (4.12) and  (4.13). 

(ii) F u r t h e r  quan t i t i e s  requi red  for the  case of the  
t r i va r i a t e  d i s t r ibu t ion  (see § 4.4) are the  m o m e n t s  of 
t he  p roduc t  xy  as a func t ion  of z. We  shal l  denote  
the  m e a n  and  second m o m e n t  by  <xy)~ and  <x~y")~ 
respect ively .  

Qui te  general ly ,  the  p roduc t  m o m e n t  <x~yt)~ of the  
t r i va r i a t e  d i s t r ibu t ion  (E.8) is g iven  by  

where  

i+~+k >_ 3 
<xSyt>z = 0o ~ r0o , 

.Zoo 0 + .d~ k,i]k-~ ijk 
i+i+~ >_ 3 

(E'14) 

i 
oo 

I ~  = x~y t ~+]+%f(x, y, z) 
-o~ ~x i ~y~ ~z ~ dx dy . (E" 15) 

I t  is easy  to  show jus t  as for  t he  b iva r i a t e  case t h a t  

( -  1)i+~ s ! t ! dk 7~-i, t-] 
I~-~ = (s--i)!  ( t - - j ) !  dz ~ ~ooo , 

• when  i _ < s , j ~ t ,  

0, when  i > s  or j > t ,  

(E.16) 
and  t h a t  

1 . 3 . 5 . . . ( 2 m - 1 ) .  1 . 3 . 5 . . . ( 2 n - 1 ) ~ ( z ) ,  

I~00= when  s = 2 m ,  t = 2 n ,  

0, when  s = 2 m + l  or t - - 2 n + l .  

(E.17) 

F r o m  (E.16) and  (E.17) we find,  omitting the common 
factor of(z), 

00 I 33 I00 k = (--1)kHk(z) , I00 k = 0 ,  

{ I ~  = 0 I ~ k  = 9 ( -  1)~Hk(z), 
' 33 i l  = | Ice k = 0 , I m  ( -  l )'~H~(z) , 

22 [ I ~ e  = 3 6 ( -  1)kH e (z), { Ioo k = ( - -1 )kH, (z ) ,  I~]k = lS(--])k/-/k(Z),  
22 Ink = 0 ,  

i2~ k22 = 4 (_ l )~Hk(z )  , (E.18) 

A P P E N D I X  F 

The  H e r m i t e  p o l y n o m i a l s  

The H e r m i t e  po lynomia l s  H~(x) are def ined by  the  
equa t ion  

d ~ 
H~(x) = (-I) ~ exp [½xe] ~--xx~eX p [ - ½ x  ~] (F.I) 

o r  

where 
q%~) (x) = ( -  1)~H~(x)~(x), 

~(x) = (2~)-½ exp ( - x e / 2 ) .  

The lowest-order  po lynomia l s  are 

Ho(x ) = 1 ,  
Hi (x )  = x ,  
He(x  ) = x e - 1 ,  
Ha(x ) = x S - 3 x ,  

H a(x) = x 4 -  6x e + 3 , 
H s ( x  ) = x 5 - 1 0 x 3 +  15x ,  
H 8 (x) = x 6 - 1 5 x 4 + 4 5 x  e -  15. 

(F.2) 

(F-3) 

We t ake  the  fol lowing tab le  of values  f rom Wicksel l  
(1917): 

x Hs(x) H3(x) H4(x) I-Is(x) H6(x) 
0-0 -- 1-000 0.000 + 3.000 0.000 -- 15-000 
0.5 --0.750 --1-375 +1.563 +6.281 --4.672 
1.0 --0.000 --2-000 --2.000 +6.000 +16.000 
1.5 +1.250 --1.125 --5.438 --3-656 +21.703 
2.0 +3.000 +2.000 --5.000 --18.000 --11.000 
2.5 +5.250 +8.125 +4.563 --21.094 --75.547 
3.0 + 8.000 + 18.000 + 30.000 + 18.000 -- 96-000 
3.5 +11.250 +32.375 +79.563 +148.969 +123.578 

COCIYRAN, 
COCHRAN, 
COCHI~AN, 

A, 227, 
COCERAN, 

7, 450. 
COCttRAlq, 

8, 1. 
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Using the matrix theory, a general type of inequalities for P1 and P1 is derived. The results ob- 
tained for P1 are the same as those derived by Karle & Hauptman.  

1. I n t r o d u c t i o n  

Since Harker  & Kasper  (1948) derived inequali t ies 
among the structure factors, the same problem has 
been examined by  m a n y  authors. Based upon the fact 
tha t  the electron densities are non-negative,  Kar le  & 
H a u p t m a n  (1950) derived some general l imita t ions  to 
be imposed upon the relations among the structure 
factors. Using their  method,  Bouman  (1956) derived 
a complete set of fundamenta l  inequali t ies for the 
structure factors possessing a centre of symmetry .  
The present  paper  will show tha t  the same relations can 
be derived in a more compact  form by  means  of the 
mat~rix representat ion of the Fourier  t ransformat ion 
between the structure factors and electron densities. 

2. R e p r e s e n t a t i o n  i n  m a t r i x  f o r m  

For the sake of s impl ic i ty  we shall  t reat  the one- 
dimensional  case, though the method can be ex- 
tended to the cases of more than  one dimension with- 
out encountering any  great difficulty. The electron 
densi ty  ~ (x) in the uni t  of the length L is represented by  

1 +co 
~(x) = ~  ~v F h e x  p[27dhx],  h = O , ± l , + 2 , . . . ;  

- ½ < x < ~ .  (1) 

Let us divide our uni t  cell into ( 2 N + l )  equal  ranges, 
A = - L / ( 2 N ÷ I ) .  Then the following formula ap- 

proaches to equat ion (1) asympto t ica l ly  with increase 
of the number  of division: 

.~Y Fh exp 2~ih  
(2N + 1)A h = - l v  

h, r = - N ,  . . ., O, . . ., N . (2) 
Defining 

r • 

(2) is replaced by  

1 Z F ~ e x p  2~i  hr 
~r  - 2 N  + 1 h = - ~ v  ' 

h, r = - N ,  . . . ,  0 . . . .  , N . (3) 

The Fourier  series (3) can now be represented in terms 
of a (2N÷l ) -d imens iona l  ma t r i x  product  as follows: 

= U F U  - ~  , (4) 
where 

= 

- Q-~v 

~0 

Qr 

(5) 


